
AD-770 632

ANALYTIC MODELS OF TIME-SHARED
COMPUTING SYSTEMS: NEW RESULTS,
VALIDATIONS, AND USES

John W. McCredie

Carnegie-Mellon University

Prepared for:

Air Force Office of Scientific Research
Defense Advanced Research Projects Agency

November 1972

DISTRIBUTED BY:

KTöi
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

BEST
AVAILABLE COPY

SECURITY CLASSIFICA1 ION OF THIS PAGE When D/n» Enltred)

REPORT DOCUMENTATION PAGE
I. REPORT NUMÜ.K

, ÄF0SR -TR -73 -2 0 75

«

?. GOVT ACCt.SSION NO.

4. TITLE fand iubf/l/cj

AiNALYTlC MODELS OF TIMEeSHARED COMPUTING SYSTEMS'
NEW RESULTS, VALIDATIONS, AND USES

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TVPE OF REPORT & PERIOD COVERED

Interim

6. PERFORMING ORG. REPORT NUMBER

5
7. AUTHORfsJ

John W. McCreJic

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213 O

^^ II. CON! ROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
f* 1400 Wilson 151 vd

Arlington, Virginia 22209

C U. MONITORING AGENCY NAME & ADDRESSC/f dlllccnl from Conlrolllng Oilier)

Air Force Office of Scientific Research fNM)
1400 Wilson 151 vd
Arlington, Virginia 22209

8. CONTRACT OR GRANT NUMGER|-fJ

F44620-70-C-0107

10. PROGRAM El EMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

61101D
AO 827
12. REPORT DATE

November 1972
13. NUMBER OF PAGES

189

16. DISTRIBUTION STATEMENT (ol f/i/s Rcparl)

15. SECURITY CLASS, (ol this report)

UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the abHtHet entered In o7ock 20, II dlllerent Iron, Kcport)

18. SUPPLEMENTARY NOTES

19. KEY WORDS fConfinue on reverse aide il necessary and identily by block number)

Reproducrd by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Comniprce
Springlli-ld VA 22151

20. ABSTRACT (Continue on reverse side il necessary and ideilily by block number) *"" ~ ""

The goals of the research discussed in this report are: (1) to create new
models of time-shared computer systems which include important features
commonly found in real systems; (2) to insure that the formulations of, and
solutions to these models are relatively simple so that they may be used by
designers and computer center managers: (3) to compare the behavior of these
models with the behavior of more complex systems through simulation studies
and empirical performance investigations of operational computers; and

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE f
m

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (-»Tien Data Entered:

UNCLASSIFIED
SECURITY CLASSIMCATIQI. OP THU PAOEfHTiwi D»tm Knffd)

Item 20. Abstract (Continued)

(4) to indicate some of the ways these models nay be used to aid in the design,
evaluation, and control of time-shared computers. Analytic models are but
one of many tools available to those who wnt to analyze, measure, improve,
and create better computing systems. Ont of the goals of this report is
to help place this approach to system modeling into perspective
important tool, not a panacea, for computer scientists.

/e as an

IÖL

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfHTi.n Data Enf.r.d)

ANALYTIC MODELS

OF TIME-SHARED COMPUTING SYSTEMS:

NEW Rl'SULTS, VALIDATIONS, AND USES

by

John W. McCreclie

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213

November, 1972

D D C

Ok i U

c: 1.
, ■

■ ■ ■ . ■ >

Submitted to Carnegie-Mellon University

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

This work was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under contract
(F44620-70-C-0107) and is monitored by the Air Force Office oc

Scientific Research. This document has been approved for public
release; its distribution is unlimited.

It

ss»

, , .,- .•■ • • ;,.,,, ,.,,....

ACKNOWLEDGMENTS

I would like Co thank all of the people who create, at Carnegie-

Mellon University, a stimulating environment in which one is encouraged

to undertake interdisciplinary studies. My special thanks go to Profes-

sors Kriebel, Lehoczky, and Newell for their many valuable suggestions,

Dorothy Josephson is able to make equations, tables, and figures look

like works of art, and I want to thank her for her preparation of the

manuscript.

This work is dedicated to my wife and two children without whose

help it might have been completed two years sooner, or maybe never.

iC.';

ABSTRACT

The goals of the research discussed in this report are:

(1) to create new models of time-shared computer systems which

include important features commonly found in real systems;

(2) to insure that the formulations of, and solutions to, these

models are relatively simple so that they may be used by

designers and computer center managers;

(3) to compare the behavior of these models with the behavior of

more complex systems through simulation studies and empirical

performance investigations of operational computers; and

(4) to indicate Fane of the ways these models may be used to

aid in the design, evaluation, and control of time-shared computers.

Chapter 1 contains an introduction to some important features of current

time-shared computers and a survey and review of many of the current approaches

to their modeling. Errors in three well known articles are discussed and cor-

rected.

Chapter 2 presents a number of new models which are extensions to, and

modifications of, previous studies. The new features include a more realistic

treatment of overhead degradation and processing quantum length. One of the

models is a feedback queueing structure having two servers in tandem. Hie

results of each model include the mean value of the time required by the systc era

ii

to respond to a request. In addition, exact and approximate expressions for

expected response time conditioned on service request are developed and

comparti with each other to study the accuracy of the approximations.

Chapter 3 presents the results of a number of simulation experiments

designed to examine the robustness of the analytic models. The first model

is similar to the first analytic formulation. The next two simulations are

based on the tandem queueing structure. The last simulation includes a

detailed model of the scheduling mechanism of TSS/360, an operational time-

shared system marketed by IBM.

Chapter 4 contains the results of three empirical studies of actual

systems. The first two were performed on TSS/360 and the third was performed

on a Univac 1108 running with EXEC-8, a time-sharing operating system.

Chapter 5 contains a discussion of sonie applications of the models

developed in Chapter 2. The first example is an application of the models

to a design decision for the operating system of a multi-processor configura-

tion. The next illustrates the way the models may be used in performanca

evaluation studies to examine possible overall system improvements arising

from enhancements to subsystems. The last example indicates how the models

may be used in a dynamic control system to improve system performance.

The first appendix presents a number of results which were used, but

not derived, in earlier chapte.s. The remaining appendices contain listings

of major programs used in the research.

Analytic models are but one of many tools available to those who want

to analyze, measure, improve, and create better computing systems. One of

the goals of this report is to help place this approach to system modeling

into perspective as an important tool, not a panacea, for computer scientists,

in

TABLE OF CONTENTS

PAGE

1. Introduction 1

1.1 The Use of Analytic Models - An Overview 1

1.2 Important Features of Time-Shared Systems 5

1.3 A Selected Review of Analytic Time-Sharing Models 10

2. New Analytic Models of Time-Shared Computer Systems 20

2.1 Introduction 20

2.2 The Poisson Process 22

2.2.1 Process Definition 23

2.2.2 Memoryless Property 24

2.2.3 Branching and Aggregation of Poisson Processes 24

2.2.4 Remaining Service Time Distribution 25

2.2.5 Output of an M/M/1 Queue 26

2.2.6 Results for M/G/1 Queue 26

2.3 A Time-Sharing Model with Random Quanta and Random

Overhead - TSMODl 27

2.3.1 Definitions and Model Formulation 28

2.3.2 A First Extension to the Basic Model 32

2.3.3 Two Examples 34

2.3.4 Mean Response Conditioned on Service Request 37

2.3.5 A Simplifying Approximation 43

2.3.6 An Exponential Service Quantum Example 46

2.4 A Tandem Queueing Model - TSM0D2 48

2.5 A Processor-Shared Model with State Dependent

Overhead, Arrival, and Service Processes - TSMOD3 53

3. Simulation Studies of System Behavior 64

3.1 Introduction 64

3.2 Experimental Methodology 65

3.2.1 The Simulations 65

3.2.2 The Statistical Analysis 66

3.3 A Simulation of TSMODl 68

3.3.1 The Model , .68

■3.3.2 The Results 70

IV

PAGE

3.4 A Simulation of TSM0D2 76

3.4.1 The Models 76

3.4.2 The Results 78

3.5 A Simulation of Scheduling in TSS/360 86

3.5.1 The Model 86

3.5.2 The Results 90

3.6 Discussion. 92

4. Empirical Studies of System Behavior 94

4.1 Int-oduction. 94

4.2 Experiments on TSS/360 97

4.3 Experiments on EXEC-8 102

4.4 Discussion 105

5. Application of the Models 108

5.1 Introduction 108

5.2 Software Lockout in a Multi-Processor 108

5.2.1 A Poisson Source Tandem Queueing Model - MODI. ..m

5.2.2 Finite Source Models - M0D2 112

5.2.3 Discussion of Results 117

5.3 Performance Improvement Analysis 120

5.3.1 TSMODl Analysis 124

5.3.2 TSMOD2 Analysis 127

5.3.3 TSMOD3 Analys is 128

5.3.4 Discussion of Results. 1 32

5.4 Dynamic System Control 133

5.4.1 The System 135

5.4.2 TAA1 137

5.4.3 TAA2 137

5.4.4 TAA3 139

5.4.5 Discussion of Results 142

5.5 Conclusion and Future Work 145

Appendix A - Derivations 147

Appendix B - Listing of TSMOD2 158

Appendix C - Listing of TSS/360 Model 162

PAGE

Apper.dix D - Listing of Script 169

Appendix E - Listing of Allocation Model 174

Bibliography 179

TABLES

2.1 Comparison of Exact and Approximate Expressions for E''T/N=n) . . .44

3.1 Comparison of ExperlmentaT and Analytic Values for TSM0D1 70

3.2 Simulation Results for Experiments on TSMODl 71

3.3 Average Response Time as a Function of Service Request TSMODl..74

3.4 Comparison of Experimental and Analytic Values for TSMODl -

Version I 78

3.5 Simulation Results for Experiments on TSMOD2 - Version I 79

3.6 Average Response Time as a Function of Service Request - TSMOD2

Version I 80

3.7 Simulation Results for Experiments on TSM0D2 - Version II 83

3.8 Average Response Time as a Function of Service Request -TSM0D2

Version II 84

5.1 Results of Simulation of TAA2 143

5.2 Results of Simulation of TAA3 144

FIGURES

1 .1 General Structure of Time-Sharing Systems 6

1 .2 Empirical Study of Interrupt Types on TSS/360 9

1.3 Specific Structure of a Number of Time-Sharing Models 15

2.1 Structure of Model with Overhead - TSMODl 29

2.2 Effect of Quantum Size on Standard Deviation of Response-SD(R).36

2.3 Effects of Overhead and Input Rates on Expected Response -

TSMODl 38

2.4 Calculation of First Walt Time, ^ 41

2.5 Structure of Tandem Queueing System - TSM0D2 - 50

2.6 Expected Response as a Function of System Load - TSM0D2 54

2.7 Expected Response as a Function of Service Request V - TSMOD2..55

2.8 Structure of Finite Source, Processor Shared Model - TSM0D3 ...58

7.9 Mean Response as a Function of the Number of Terminals -

TSM0D3 6 3

vl

CHAPTER 1

INTRODUCTION

1.1 THE USE OF ANALYTIC MODELS - AN OVERVIEW

"Everyone today knows that a queue is a waiting line. If one
also takes the trouble to examine the literature, which now is nr>ar-
ing 2000 references on the subject, he might get the idea that all
those contributing to the understanding of congestion phenomena are
interested in doing something about them since, after all, queueing
theory is concerned with relieving pain and saving tirm for all of
us who have to wait. Indeed, queues make a substantial demand on ar
very lives by taking precious time from them.

But the situation is getting worse in spite of the fact that
In the past seven years the litexature of queueing theory has in-
creased by half of its amount for the previous fifty years. Improve-
ments do not match the increase in theoretical developments. Rarely
has so rauch ingenuity been shown in tackling a variety of technical
problems on paper by some of the ablest people in the world. It may
be that many additional good papers are waiting in queues for publica-
tion. But real life queues are still primitive, and indifference to
waiting by both facility owners and resigned customers is a normal
state of affairs."

Thomas L. Saaty

"The big problem with management science models is that managers
practically never use them. There have been a few applications, of
course, but the practice is a pallid picture of the promise. Much of
the difficulty lies in implementation and an especially critical aspect
of this is the meeting between manager and model. I believe that com-
munication across this interface today is almost nil and that the situa-
tion stands as a major impediment to successful use of models by managers
 A model that is to be used by a manager should be simple,
robust, easy to control, adaptive, as complete as possible, and easy to
communicate with."

2
John D. C. Little

The goals of the research discussed in this report are: (1) to create

new models of time-shared computer systems which include important features com-

monly found in real systems; (2) to insure that the formulations of, and solutions

1
Saaty, T., Seven More Years of Queues, A Lament and A Bibliography", Naval

Research Logistics Quarterly. Vol. 13, No. 4, December, 1966, p. 447.

2
Little, John D. C, "Models and Managers: The Concept of a Decision Calculus",

Management Science. Vol. 16, No. 8, April 1970, p. B-466.

to,these models are relatively simple so that they may be used by designers

and computer center managers; (3) to compare the behavior of these models

with the behavior of more complex systems through simulation studies and

empirical performance investigations of operational computers; and (4) to

indicate some of the ways these models may be used to aid in the design,

evaluation, and control of time-shared computers. The quotations from Saaty

and Little indicate that often theoretical results of operations research

studies are not applied to practical situations. The Institute of Management

Science recently changed the name (and the focus) of one of its periodicals

to Interfaces in an attempt to bridge this implementation gap.

Two reasons why computing system models often remain unused are that

articles describing them seldom contain discussions about their validity

for describing observed phenomena and that often the results are so complicated

that users are not willing to invest the time needed to understand the model

and its behavior. The main purpose of descriptive models is to account for

observed phenomena of physical systems. The complexity of most actual sys-

tems requires that any particular model address itself to a limited and con-

strained subset of state variables. Thus each model is an abstraction of

a particular set of important features of interest to an analyst or designer.

Simplifications required to make an abstraction manageable by a particular

solution technique limit both scope and power. Since analytic models are

characterized by symbolic formulations and deductive derivations, they require

many simplifying assumptions. The consequences of these assumptions must be

explored before one applies the model.

For the study of computing systems there are two other tools which are

related to analytic modeling:

(1) the construction of large, detailed, simulations

(2) the design and implementation of empirical investigations

All three methods have areas of applicability which intersect. For example,

analytic models often expand to the point where a large amount of computa-

tional effort is required to calculate results. Often a point is reached

when a modest simulation may be a more cost effective approach. Large simula-

tions may eventually grow into system prototypes, and enpirical investiga-

tions can provide insight required to design better models. Analytic models

often indicate which of many possible parameters or subsystems are good

candidates for more detailed study via simulation and experimentation.

Another important use for analytic models is as a reference system for statis-

tical analysis of simulation results. For example, Gaver (1969) presents

evidence showing how the classic Monte Carlo technique of control variates,

which makes use of an approximate model, can improve simulation efficiency

by reducing the variance of parameter estimates from simulation experiments.

To be useful, analytic formulations should include the essential features

of a system, or subsystem, and should have solutions that are readily under-

standable. The necessity of spending excessive computer effort to solve

for each parameter value of an analytic model casts doubt upon its usefulness

since simulations typically can handle more detailed cases with similar effort.

The conclusion from these considerations is that analytic models, simulation

studies, and empirical investigations should complement one another in the

study of computing systems. The new models developed in the next chapter

add to the tools available for analytic performance analysis.

Section 1,2 contains an introduction to some important features of

time-shared computer systems, and Section 1.3 contains a survey and review

of many of the current approaches to their modeling. Errors in three well

known articles are discussed and corrected.

Chapter 2 presents a number of new models which are extensions to, and

modifications of, previous studies. The new features include a more realistic

treatment of overhead degradation and processing quantum length. One of the

models is a feedback queueing structure having two servers in tandem. The

results of each model include the mean value of the time required by the sys-

tem to respond to a request. In addition,exact and approximate expressions

for expected response time conditioned on service request are developed and

compared with each other to study the accuracy of the approximations.

Chapter 3 presents the results of a number of simulation experiments

designed to examine the robustness of the analytic models. The first model

is similar to the first analytic formulation. The next two simulations are

based on the tandem queueing structure. The last simulation includes a

detailed model of the scheduling mechanism of TSS/360, an operational time-

shared system marketed by IBM.

Chapter 4 contains the results of three empirical studies of actual

systems. The first two were performed on TSS/360 and the third was performed

on a Univac 1108 running with EXEC-8, a time-sharing operating system.

Chapter 5 contains a discussion of some applications of the models

developed in Chapter 2. The first example is an application of the models to

a design decision for the operating system of a multi-processor configuration.

The next illustrates the way the models may be used in performance evaluation

studies to examine possible overall system improvements arising from enhance-

ments to subsystems. The last example indicates how the models may be used

in a dynamic control system to improve system performance.

The chapter concludes with an evaluation of the techniques and points to

future work,

1.2 IMPORTANT FEATURES OF TIME-SHARED SYSTEMS

"It is now possible for users
to be connected by a pair of wires to a powerful computer system
that ~iay be in the next room or may be many miles away. All users,
wherever they are, have instant access to the computer, and can e:-
pect a response to their demands that is limited only by the fact that
the computer must share its time between all the users. The develop-
ment of such systems is, however, still in its infancy, and much develop-
ment of hardware and software must take place before users can be given
everything that they have a right to demand. There is no doubt that,
in a few years time, the best of the currently operating systems will
appear very primitive indeed."

M. V. Wilkes

Time-Sharing Computing Systems, by Wilkes (1968), is a good introduction

to the hardware and software features included in many time-shared structures.

It will provide a good background to the non specialist.

Figure 1.1 illustrates the basic features of many time-shared systems.

Users submit tasks from terminal devices to the system. A task may be con-

ceptualized as a job step which requires the use of a number of system re-

sources to be completed. The computer's operating system controls and al-

locates these resources, such as primary and secondary memory, channels, and

processors, so that users requiring small amounts of resources will get a

rapid response from the system. In this report response time will be defined

as the elapsed time from task submittal to task completion. If a particular

task keeps a resource such as the central processor occupied for a time period

that would seriously affect the response of other jobs in the system, it is

interrupted and placed in the system of queues while another task uses the

resource. When the system has finished with all of the work associated with

3
Wilkes, M. V., Time-Sharing Computer Systems. American Elsevier Publishing
Company, Inc., New York, 1968, p. 2.

<U en

(0
I-
<U
en
3

c
c
Vt
D
4J
CU
u
en

^!
tn
(0

XI

0)

a

<4-l

o

(0 a, §
00 4-1
a Ul

■r-t >,
U cn
4J •
•H wi tn
g d 4)

^3 •H O
3 4J •f■^
en 3 >

a (U
C p rt o o

•H o .-1
4J CO « 0 ß
rH u •i-l
3 a in a
o u 0) a cn w

>-i 3 c
<u a- Q
m 0) >-

S3 >- M-l

3.
M

■i-l

tn

CO

00
C

•r4

JB
to

I

E
•H
H

4-1
O

OJ
U
3

■u
u
3

to
u
<u
a

-7-

the task it gives the user an appropriate output message. Using the con-

tent of this message, the user formulates his next job step, and in »"his

manner cyclic interactions continue until the user leaves the system. A

major goal of such designs is to encourage users to interact with data and

programs. If interaction is very slow or cumbersome, effectiveness will

diminish. Short requests usually receive high priority through an interrupt

scheme that allows the central processor to switch to a new task whenever

the active one is delayed or exceeds a maximum processing threshold called

a quantum interval. In this way the central processor divides its capacity

among tasks awaiting execution. When a user submits a request that will

require minutes, or even hours, of central processing time, interactive

response should not be greatly affected. The user with a long task must

realize that due to resource sharing with interactive requests, his job will

take longer on a shared system than on a batch system of equal capacity.

A "good model" must predict both fast response time for short jobr, and response

degradation for long ones.

Another observed phenomenon of time-sharing is non-linear degradation

of response time as a function of system load. Systems can provide good

response only within a limited range of input demand. If demand exceeds

this range, response time deteriorates rapidly. Because of this degradation,

many systems arbitrarily limit the number of users who are allowed to inter-

act simultaneously with the computer. Non-linear response to increasing de-

mand is another physical observation which should be a derived consequence

of a "good model".

Computing structures allowing frequent task switching and quanta inter-

ruptions add overhead time to that already present in the basic operating

system. This addition arises because of many bookkeeping functions required

-8-

to maintain status lists of tasks and shared resources. A "good model" of

time-sharing systems shorld explicitly considei overhead degradation.

The random nature of actual quantum intervals is often ignored in analytic

models. Input/output requests, paging demands in systems with virtual

memory, supervisor calls, and external interrupts are causes of quantum

ends, in addition to task completions and quantum overruns that combine to

make actual quanta random. The following statistics from a user session at

Carnegie-Mellon University on an IBM 360/67 demonstrate that the IBM time-

sharing monitor, TSS, processes interrupts occurring most frequently for

reasons other than task completion or excessive central processor utilization

during an interaction. Figure 1.2 is a state transition diagram illustrat-

ing the results of a probe of a typical user session.

Numbers on the figure are frequencies of events. During this 16 minute

probe, 927 separate interactive job steps generated 30,856 interruptions to

normal processing, an average of approximately 33 interrupts per interaction.

Only 367, or about one percent, of these interrupts were processing quantum

overruns. A random event such as a reference to part of a program not cur-

rently in core (a page fault) triggered the vast majority of quantum aborts.

The software monitor used to gather these statistics creates an output

record for every internal system event of interest. The analyst initializes

a particular probe by informing TSS which events are to be traced, and the

system saves the resulting output on magnetic tape for later statistical analysis,

Deniston (1969) describes the design and performance characteristics of this

type of measurement technique.

The preceding review summarized a number of important features of opera-

tional time-shared systems. The next section indicates the kinds of struc-

tures currently in use to model them. The highly variable nature of time-sharing

"rrw«wrTWTW-''W"»a!^W«f«WBi^^

-9-

r
Users l

Creating .927
Interactive,

Tasks

System of
Task Queues

Page Fault
27.100

U-^_ Normal Quantum
Time Overrun

367

Central
Proceüsor

---^— Unavailable
Resource

2425

—<— Input/Output
964

<-

-K-

m y

J

Figure 1.2

Empirical Study of Interrupt Types on TSS/360

-10-

interactions indicates that probabilistic methods should form a basis for

system analysis. Queueing formulations often become very complicated even

though the models are easy to describe. Thus one must carefully select

areas to study within a system or queueing theory will be of little help.

1.3 A SELECTED REVIEW OF ANALYTIC TIME-SHARING MODELS

Time-sharing models have grown at a rate paralleling thar of actual sys-

tems. McKinney's (1969) survey and annotated bibliography, containing 35

references, categorizes most contributions through 1969. An earlier paper

by Estrin and Kleinrock (1967) presents a useful taxonomy of analytic models

and a review of simulation and measurenent studies of several systems. These

references are excellent introductions to the general area of Lime-sharing

models. The more limited goal of this section is to trace the development

of models upon which the work of Chapter 2 depends.

Figure 1.1 may be used as a conceptual framework to classify many models.

The user subsystem generates tasks for the computing subsystem. There are

two common ways of modeling the input process. The most common approach

is to assume that requests arrive at the computer according to a homogeneous

4
Poisson process with arrival rate X jobs per unit time. This assumption is

equivalent to stating that interarrival times between requests have an ex-

ponential distribution with mean l/x time units. This model of the arrival

process also assumes that the input rate is independent of the behavior of

the computer subsystem. The common queueing terms for this assumption are

the "exponential-, infinite source" input, or the "Poisson source".

The other common approach to the arrival process is to assume a finite

number of independent users, each of whom submits a task and waits until it

4 ■
Section 2.2 contains a summary of many of the properties of a Poisson process,

-n

has been satisfied before submitting another. For this case "think-time",

commonly defined as the interval between response to one task and submittal

of the next, for each of the users, has an exponential distribution with

mean l/x time units. For this "finite source" model the combined arrival

rate to the computer depends upon the number waiting for service since a user

may submit only one task at a time. This structure is self balancing since

the input rate decreases as the system becomes overloaded.

The exponential distribution is central to most analytic time-sharing

models. If time between events is distributed exponentially, and an event

has not occurred for t time units, the time remaining until the next event

has the same exponential distribution as the original inter-event interval.

This manoryless, or Markov, property permits many simplifications in model

structure because state information concerning elapsed time since a prior

event is unnecessary.

Four empirical systan studies support the approximate exponential shape

of interarrival time distributions, but the measurements usually have higher

variance than predicted by the exponential (Totschek, 1965; Coffman and Wood,

1966; Bryan, 1967; Scherr, 1967). Although the exponential does not fit the

data exactly, the additional complexity introduced by allowing general inter-

arrival distributions is not justified for models having simple results as

5
a major goal. Greater input variance causes slightly increased system congestion.

There are also two common ways of modeling the basic service philosophy

of a time-sharing organization. The first, and more realistic, is the "round

robin model" in which one explicitly considers a quantum interval during

which a single task receives all the power of the central processing unit.

See Saaty (1961), Chapters 9 and 10, for formulations of queueing systems
having generalized input processes.

-12-

If the task does not terminate naturally during this interval, it is inter-

rupted and forced to rejoin the queue of waiting users while some other task

gains access to the processor. Some models include priority levels in the

queueing subsystem. The terms "processor-shared" or "pure time-sharing"

denote the second basic service approach which may be viewed as a limiting

case of the first method. At each instant, the fixed processor capacity, C

instructions per time unit, is uniformly shared by all active tasks. Each

of M active jobs receives C/M units of computing power per unit time. In

the limit, as the quantum interval approaches zero, the finite quantum, round

robin model becomes the processor-shared system.

One of the early works to consider a feedback qurueing structure similar

to Figure 1.1 was the paper by Takacs (1963). His problem arose in studies

of the theory of telephone traffic, and there is no mention of either time-

sharing or computer system design. His formulation includes an infinite ex-

ponential source, a finite and random quantum interval, and total service

times which are the sum of a geometrically distributed number of quanta each

of which is drawn from the same generalized distribution. He solved this

model for the expected number of ta^ks in the system and for the unconditioned

moments of response time for a rt.^st. (An interesting aspect of the study

was the use of a symbolic differentiation computer program to find the complicat

ed expression for the second moment of response time.)

Chang (1966) realized the applicability of the Takacs work to the time-

sharing domain and redefined a number of parameters to be consistent with

computer terminology. He extended the original model to consider a random

selection of the quantum distribution, but he solved the extension only for

6Coffman and Kleinrock (1968) summarize many of the models of these service

disciplines.'

""■'"I' "I"1" STOiwwsSiW-'mswBet'jB:-^'.--"

-13-

the generating function of the number of queued tasks at the end of a quantum

or at the instant of a job departure. Neither author calculated mean response

conditioned on the amount of service requested. This latter quantity indicates

how a time-sharing design will respond to tasks requiring different amounts

of computing time. Section 2.3 presents a logical extension of the Takacs

work in which random overhead is added to the quantum interval and mean

response conditioned on service is calculated.

Kleinrock (1964) first calculated expected response conditioned on

service for a simple model. He constrained events to occur only at discrete

points of time corresponding to constant service quanta of length Q. At

the end of each interval a new task enters the first-in-first-out (FIFO)

queue with probability XQ; the job being served, if the system is not empty,

either completes service (probability l-a) or rejoins the end of the queue

(probability a); and the processor takes the job at the head of the queue

for a service interval of length Q. Call the processing requirement of a job,

V. A job having V = nQ units is forced to join the end of the queue n times

before its processing is complete. Kleinrock calculates the steady state

expected number of tasks in the system, E(M) as given in equation (1.1).

He also calculates the conditional response time for a job requiring nQ units

of processing, E(R|nQ), and shows that a good approximation to the latter

result is the simple formula of equation (1.2).

(1.1) E(M) = •^-
i -a- XQ

(1.2) E(R|nQ) «nQ(l +^2_)
1-cr-XQ

In a later paper Kleinrock (1967) considers the limiting case (as Q -♦ 0)

of the above model. For this processor-shared case the arrival process

.14-

becomes the infinite exponential source with rate X jobs per unit tinie^ and

the service, requirement for each task becomes an exponential random variable

with mean l/u time units per job. liquation (1.3) Is hi,r. result for expected

response time conditioned on a processing need of V time units. In Che con-

cluding sections of the paper Kleinrock further extends his earlier work

by considering priority classes in the queueing structure.

(1.3) E(R|V) " V'U/(U-A)

A series of four similar articles closely related to Kleinrock's work

began with a paper by Shemer in 1967,, In these models computing requests

come from an infinite exponential source having rate \ jobs pei unit time.

Processing requests are exponentially distributed random varial les having an

expected value of l/u time units. Mach request, joins the end of a first-in-

first-our: queue upon arrival. Each task receives a maximum process irv quantum

interval of Q time units, where Q is a constant. If a request completes

service before it;, time limit expires, it leaves the system and the processor

immediately begins work on the task at the head of the queue. If i job can-

not complete service during a quantum, it is Interrupted and forced to join

the end of the queue while the processor v/orks on the next waiting task.

Figure 1.3 Illustrates this specific form of the general structure of Fi -ure

1.1.

For this model, the expected number of tasks in the system, and the

expected unconditional response time, are identical to the results for the

classical Poisson source exponential service, single channel queueing

system (M/M/l). Shemer (1967) uses these facts in his derivation of expected

7
In queueing literature, models are often classified using Kendall's notation:

a/s/n where "a" denotes the type of arrival, "s" the type of service, and "n"
the number of service channels. In the example above "M" denotes Markov, or
exponential, arrival and service.

-15-

or
T?

3

n

0
E J«!
i-i U

1 J C «
<u cfl <u Xi
X "Si
0) o cy « m

4J *
u "TJ in i
o cuu a <d a
(0 3 3 «0 «:
m II a
0) CD 4J CO m-
o <U n 4J T1C
o M 3 -W c
u 3 3 Ö QIC

(14 U J 3 (0 4.

<U
3
0)
3
o-
O
b
M
U4

I

I -I

.J
<U ^fN

ß <U \
1-1 O

CO 4J •H <u
a) > B
4J 4J u •S
<o •^ 0) 4J ^ d CO

2 3 3
c ^
0) U CO t-i
(10 V 1-1

a. 4-1 d
to c <o
co co <u a>
<u ^3 c s o O o
o i-i a •C
u X 4J
a r< 0) •
4J 01 0) J3
3 4J > c o
a CO CO o l-J
c U x: •r4
i-i 4J ^

U CO 3 (U
e CO 4-1 XI a.
o co •H
CO CO <u u CO
(0 X 3 4J 4J
•fl CO o* CO •I-I

O CO 0) •H d
PL) 4J PS -a 3

n •H d
S 4J (0

^-N •r4 0)
at .* e
3 ca co
V co 4J x:
3 •U d 4J
o- CO -r^

«I 3 S
>w cr
o 4J 0)

« >.r-l

"2 x: d xi
d 4J CO CO
01 B -H

>. u
o ü > co
4-> •H o >

t-t x:
d ■rH ß
M ^3 >4-l O
3 CO O XI
4-1 x» d
0) o 4J m
h M ft S

Q. (U
co •O r-i

J£ <u d eg
en x: oi i-i
cd 4J a 4J
H cu d
v^ "•Oil

-odd >, 0) i-l o
U 4-1 {X. •
■H 3 co X ^
H Xi T* vor
•H ■H 3
XI W O" d i
at 4J CO <U

X> co x: i
O •H 4-1 4J f-H
H •a ao co ^-^

Ct, d x:
>» 0) 4J en

.-■1 .-I i-l
^ >,
CO >W 4J O-
•>-l O i-l
4J r>l «
d E i-l o
0) 3 X> W
d 4J co
o d xi >-i
a co o co
X 3 Vi 3
cu cr n, cr

0)
0> CO 0)
»-I X! ^
CO ÖOH O

d
CO i-l •>
U U - C
co 3 -a cO
o) xi <u x:
3 > U
O* 0> -H
0) O (U ca
^l -H U CO

> 0) 0)
0) >-(V-. r-l
U (U

•r4 CD >, CU
> X) XI
u <u ia
0) 4J 0) i-l
co qi h r-l

d I-I i-i
(U -rl (0 »

d C en 3
i-l 0) «-^^
W3 4J XI rH

0)
4J
o
IS

u
3

0)
•a
o

?^

bO
r

-, i
u
n)
X! w

I
a-

cu

I
Ü

s

i
4-

g
SI
D,
W

-16-

response time conditioned upon a particular task's service request, but

he makes two errors. Using expected value arguments he derives a recursive

expression for the mean time spent in queue waiting for service quantum i as

a function of the expected wait for servica quantum (i-1). The derivations

are clear to follow and correct except for i=l and i=2. The two properties

of the model that Shemer does not treat correctly are:

1. The remaining time, Q , of a quantum interval in progress, if

the processor is not idle, when a new task enters the system

has a distribution that is different from the distribution of

a full quantum interval.

2. The conditional probability that a task will return for more

service, given that it has already completed part of a service

quantum, is different from the probability that a task just start-

ing a quantum interval will return for additional processing„

These errors propogate through all values of i and distort the final result.

Section 2.2 contains a discussion of the properties of a quantum in progress

when a new task arrives and Appendix A contains a correct derivation of this

model with a slight extension. Shemer's paper concludes with extensions to

the basic model involving priorities,

Coffman and Kleinrock (1968) use a slightly more complex approach to

study the same model in a paper which also contains a number of interesting

extensions including priority scheduling policies. Although both articles

were published in the Journal of the Association for Computing Machinery,

the latter paper did not indicate the errors in the earlier work. Coffman

and Kleinrock made a small mistake in the derivation of the second moment

-17-

of the processing time actually received by a task during a quantum. Their

result is distorted also since this intermediate formula appears in the

final expression. Appendix A presents the corrected result lor fhe second

moment of a quantum interval of this type.

Adiri and Avi-Itzhak (1969) solved a model similar to Figure 1.3 with

the addition of a constant delay, d, before every processing quanta. This

extension adds realism to the basic model, and complicates the solution.

The delay represents constant -verhead degradation, or set-up time, required

by the processor to switch from one task to the next. The added complexity

of the solution arises from the fact that the total processor time required

by a task is no longer exponential. A task needing V units of processing,

where V is an exponentially distributed random variable, now requires

V + [V/Q]«d processing units where [X] denotes the largest integer greater

than or equal to X. The results for the expected number of tasks in the

system and the expected unconditional response time are now identical to

the exponential source, general service time, single channel queueing system

(M/G/1). The authors employ sophisticated mathematical techniques involving

complicated Laplace transforms and generating functions to solve for response

time conditioned on service request. The solution is correct and reduces to

the results of Shemer (1967) and Coffman and Kleinrock (1968) when the delay,

d, is set to zero, and when the corrections noted in the preceding paragraphs are

incorporated in the earlier derivations. To derive expected value of response

conditioned on service, one may use expected value techniques employed by the

previous authors rather than the more involved methods used by Adiri and

Avi-Itzhak. Since these simpler techniques are the basis for the derivations

in the following chapter. Appendix A contains a proof that the results from

the two methods are identical.

-IS-

Rasch (1970) studies the model of Figure 1.3 and then extends it in

almost the identical manner as the work described in the preceding paragraph.

He adds a constant delay d after, rather than before, each processing quantum.

His approach contains a major mathematical error not present in any of the

other three works. While deriving the expression for expected waiting time

in the queue before receiving service quantum i, he mistakenly presumes that

the mean value of all waits after the first will be the same. Although the

differences are small, and one may wish to make this simplifying assumption

to achieve simpler final expressions, one must realize (as the other authors

did) that the wait for service quantum i depends in a non-trivial way upon

the wait for service quantum(i-l).

The preceding paragraphs place into perspective previous studies that

are in the direct line of development of the derivations of Section 2.3 and

2.4. The work of Section 2.5 has different historical roots since it is a

finite exponential source, processor-shared, model including overhead loss

as a function of system state. Early work in this area is categorized in
Q

queueing literature as "the machine interference" problem. Sherr (1967)

recognized the applicability of this work to the time sharing domain and

presents an exponential, finite source, processor-shared model. He compares

his results with a simulation and with measuremenus ».aken from the CTSS

time sharing system at MIT. To approximate an overhead loss of X percent,

he simply reduces the capacity of the processor by X percent.

Attempts to solve the structure of Figure 1.3 with modifications of

a fir-' ; number of exponential input terminals and a constant delay d before

each quanta started with the paper by Coffman and Krishnamoorthi (1964).

^ the book by Saaty (1961), p es 323-333, for an excellent review of re-

sults of classic work on machine interference.

-19-

This work was expanded by Krishnamoorthi and Wood (1966) and then further

refined with the correction of an error by Adiri and Avi-Itzhak (1969b).

Results of these studies are complicated in both the methodologies and the

form of the expressions. Greenberger (1966) made a number of mathematical

approximations to achieve simpler, although approximate, results. Applying

a cost function to service delays he investigates the optimal size for the

quantum parameter Q. In all of these studies overhead delay, d, and maximum

quantum size, Q, are constants and service and input distributions are ex-

ponential.

A number of other papers present surveys of analytic models concerned

with features such as externally assigned priorities and service disciplines

which are dependent on system state. In addition to the two surveys referenced

at the beginning of this section, and the papers already discussed, the inter-

ested reader is directed to studies such as Coffman (1966), Coffman and Muntz

(1969), and Schräge (1967) and (1969).

A different modeling approach is based upon the work of Jackson (1963)

and Gordon and Newell (1967). In these models tasks circulate among a

number of service stations. Buzen (1971) applies these methods to multi-

programming systems, and Moore (1971) applies them to time-sharing designs.

Courtois (1971) applies results of Simon and Ando (1961), concerning the

dynamics of nearly decomposable systems, to queueing systems. His methods

significantly simplify the numerical work required to solve hierarchical

queueing networks.

Chapter 2 contains a number of models which extend the work reviewed

in this section. The aim of these derivations is to include as many fea-

tures of real systems as possible in model formulations which lead to straight-

forward results.

-20.

CHAPTER 2

NEW ANALYTIC MODELS OF TIME-SHARED COMPUTER SYSTEMS

2.1 INTRODUCTION

The analytic models presented in this chapter are the end products

of compromises designed to include a number of important characterisLics

of current time-shared computer systems often ignored in other analytic

models, but still to insure that the results are easy to understand and

compute. They focus on the mean time required for a time-sharing system

to respond to a user's request.

The survey of the analytical modeling literature in the previous

chapter revealed that overhead and Ewapping times are often neglected

in models of time-sharing. If considered, they appear almost exclusively

as constant delays either before or after each service interval. Simi-

larly, even though most time-sharing systems have many different quantum

sizes based on a job's priority, its recent history, and the system state,

models in which the quantum interval is a parameter usually consider it

to be a constant and not a random variable. Results of many of these

models appear as Laplace transforms which often require numerical inver-

sion. Transforms are also used directly to obtain moments of distribu-

tions by differentiation, but often the results are very complicated.

(See the following papers for illustrations of these statements: Greenberger,

1966, Krishnamoorthi and Wood, 1966; Coffman and Kleinrock, 1968; Adiri

and Avi-Ttzhak, 1969, Rasch, 1970.)

The new models presented in this chapter extend previous work. The

first formulation includes features such as:

-21

1. a random part of each quantum interval is required for

overhead functions

2. the service/execution segment of each quantum is a random variable

3. the total service request for a task may have any distribu-

tion which can be represented as a geometrically distributed

sum of independent random variables, each of which has the

same arbitrary distribution

The second model is a tandem service structure which models the multi-

programming aspects of many systems by representing the behavior of a

task as a random number of cycles through both a central processor and

an input/output subsystem. Processing may occur simultaneously in each

subsystem. The third model is a finite source system having a processor-

shared service facility with overhead degradation which la a function of

the state of the system.

The followiiLg symbols will be used in a standard manner throughout

the report. Other notation will be introduced as needed in each section.

P(«) ■ the probability of event (•)

P(G|H) = the conditional probability of event G given event H

F (t) = the cumulative probability distribution function of a
random variable X

= P(X <■ t)

= f dF (t) (the Stieltjes integral)
-00 X

fx(t) = the density function of a continuous random variable X

.11.

E(X) = the expected value of a random variable X

= J'l tdFx(t)

E(X|Y) = the conditional expectation of X given Y

E(g(X)) ■ jj|(t)dl (t) ■ the expected value of a function g(-)
of a random variable X

VAR(X) = the variance of a random variable X

= E((X - E(X))2)

SD(X) = the standard deviation of a random variable X
1

= (VAR(X))7

1, (s) ■ the Tjaplace transformation of a non-negative random
variable X

-sXx ,.«> -st
= E(e-SA) = f e ai-dFY(t)

-1 0 X

L (t) ■ the inverse Laplaco transforroation

Before proceeding to the derivation of the models, the next section will

review some important properties about the Poisson process that are used

throughout the chapter.

2.2 THE POISSON PROCESS

This section contains a brief summary of a number of well known

properties of the Poisson process which are used throughout the field ol

queueing theory. These results are usually scattered throughout texts. The

following books contain good discussions: Feller (1957); Saaty (1961);

Parzen (1962); and Conway, Maxwell, and Miller (1967). The following

presentation borrows extensively from the material contained in Chapter 8

of Conway, Maxwell, and Miller (1967). This text also contains an excel-

lent bibliography for the reader interested in pursuing the subject in

greater depth.

-23-

2.2.1 Process Definition

A counting process is usually defined as an integer-valued process

[N(t), t 2: 0] which counts the number of points occurring in an interval,

these points having been distributed by some stochastic mechanism. Here

the points represent the times at which events of a specified character

occurred. Consider events occurring in time on the interval 0 to »,

and for t > 0 define N(t) to be the number of events that have occurred

in the interval 0 to t (the interval is open at 0 and closed at t). Let

N(0) = 0. Then,for a Poisson process, whatever the value of N(t), the

2
probability that during (t, t+h) an event occurs is X-h + o(h),

2
and the probability that more than one event occurs is o(h). The term

o(h2) denotes a quantity which is of smaller order of magnitude than h

so that o(h2)/h tends to zero as h tends to zero. The Poisson process

has increments between events which are independent and stationary in time,

The following equations are derived consequences of the process

definition.

,. ^n -Xt
(2.1) P(N(t) - n) - U „,e , n=0,l,2,...

(2.2) E(N(t)) = X.t

1

(2.3) SD(N(t)) = (X-t)2

If A is the random time between two successive events, then:

(2.4) P(A St)- l-e'U, t s 0

= 0 , t < 0

See Parzen (1962), p. 117,

-24.

(2.5) E(A) = 1/X

(2.6) SD(A) = 1/X

2.2.2. Memoryless Property

A consequence of the postulate that the probability of an event

during (t, t+h) is independent of previous process history is that the

time until the next event, given that no event, has occurred for y time

units, Is independent of y.

(2.7) P(A > y+t|A > y) = P(A > t) = e"U, t > 0, y > 0

Another interesting property of the Poisson process is that if n events

occur in an interval (0,t), then the n event times are independently

and uniformly distributed over the interval (0,t)

2.2.3. Branching and Aggregation of Poisson Processes

Consider a Poisson stream of events with rate \ which is randomly

split into k different streams in which the probability that path i will

be taken is p.. If the output paths are chosen independently, then the

th
i path is a Poisson stream with rate Xp..

k

E p - 1
1-1 i

-25-

Conversely, if k independent Poisson streams, having rates >1,X2,...Xk,
k

are aggregated, the resulting stream is Poisson with rate X = Z X..

h

V
3 . y

V

2.2.4 Remaining Service Time Distribution

Let jobs arrive at a server from a Poisson source. Given that a

new job arrives while another one is being served, the remaining service

time, Q , is defined as the time interval from the arrival of the new

job until the service completion of the one already there. If service

intervals, X, are random variables with distribution function ^(t)»

then Conway, Maxwell, and Miller (1967) derive the following two results

2
about Q , the remaining service time:

(1 - F (t))dt

(2.8) P(t SQr ^ t + dt) = ^5 , 0 ^ t < «>

kfl

<2-') '«fr - (W) E(X) ' k=1-2 —

r iv ■,% '2.5) äives the probability that Q will be in a small interval,

and (2.9) gives the kth moment of Qr. The following diagram Illustrates

Conway, Maxwell, and Miller (1967), p. 146-147. Appendix A contains
derivations of equations (2.8) and (2.9). The method used to derive
(2.8) differs from the approach of Conway, Maxwell, and Miller.

-26-

the relationship between x anH n TU~ - i^
P ecween X, and Qr. The results are conditioned on there

being a Job in service when a new one arrives.

Service interval of length X

. time

Arrival time X
of new job V

Remaining service
interval of job in
progress when new
job arrives

2.2.5 Output of an M/M/1 quPii^

If the a„l„al „ . sln8le ..„„ q^iag ^^ ^ ^^ ^

race X. M che servlce ls ^Mntul „^ ^ ^ > ^ ^ ^ ^ ^^

.c-duHng procedure Is lnde?endw of ^ ^ ^ ^^^^^ ^^ o£ ^

jobs, th.n ln the steady state tha departure ^^^^^ ^^ ^^^^^^

«.tribute exp„„mtlal varlable8 wlth p.rtm>t<t x_ ^ other ^^^ ^^

This r..ult may be extended to the ^^^^^ birth_death ^^ ^

thus It als» applies t(> M/,M/il systeins_

2-2-6 Hasults fnr M/c/l 911».,»

If tha input process to a slngie server queueing syste™ is Poisson

"1th rate X. if the processing time, X, has a general distributio„ „Uh

-an l/u. an. lf the trafflc lBe.njUy p . ^ ^ u ^ ^^ ^^ ^

•n, service discipline thac i, independent of the processing tlmes of ehe]ob.

-27-

(such as first-in-first-out), the following results are steady state values

for important system parameters.

(2.10) E(flow time through queue and server) = E(R)

2-E(X)«(l-p) + X-E(X2) = X.E(X
2)

2-(l-p) MX; ^ 2.(l-p)

(2.11) P(server is idle) = 1-p

Equation (2.10) is the classic Pollaczek-Khintchine formula. The expected

number of jobs in the queue and in the server is related to this result by (2.12),

Little's theorem (1961). These results show that different processing time

independent scheduling rules have no effect on the mean number in the system,

the mean response time, and the probability that the server will be idle.

Scheduling rules which are independent of processing time do have effects

on the response times of individual jobs, but not on the expected value of

response for all jobs.

(2.12) E(number of tasks in M/G/1 system) = X'E(R)

2.3 A TIME-SHARING MODEL WITH RANDOM QUANTA AND RANDOM OVERHEAD - TSMODl

The model in this section has the following basic structure: a

Poisson source of tasks; a random delay drawn from a general distribution

representing overhead loss due to quantizing; a random processing quantum

drawn from an arbitrary distribution; and feedback to a round robin,

first-in-ftrst-out queue. The independent variables are: speed of the

processor; interrupt probability; and the probability distributions of

quantum requests, overhead delays caused by each interrupt, and interarrival

-28-

times between requests. The dependent variable is the expected value of

the time required by the system to service a request. Although analysis

becomes complicated, the directly applicable result is sijnple. This model

is useful since it retains simplicity while including a number of essential

parameters !;or time-shared systems. Figure 2.1 illustrates the structure

of the model.

2.3.1 Definitions and Model Formulation

Define the following symbols for use in the model.

C = a constant equal to the computer processing rate expressed
in instructions per unit time

I = the probability that a task has been completed after an
interrupt

W = the random number of instructions executed during a pro-
cessing quantum before an interrupt occurs

wi = the i moment of W

V = a random variable denoting the number of instructions
required by a task for one complete interaction

. .th
vi = the i moment of V

D = a random variable representing the overhead delay of an
interrupt

di = the i moment of D

M = the random number of tasks in the queue and in the server

R = response time, a random variable denoting the elapsed
time from task submittal to task completion (queue wait-
ing time plus service and overhead time)

N = the number of interrupts experienced by a task during
the execution of its V instructions

A = a random variable expressing the interarrival time between
tasks requesting service from the system

Q = the random length of a auantum interval which is the sum
of a service segment, W/C, and an overhead delay D.

-29-

tu

U

bM

U

u

60 e
•H
kl
3

•O

(0
0)
u
(0

r-l

(0
(0
H

1

^
CO
eg 0)
H 3

<u
O 3 u-, O*
l->
fe

0)

<u
>
o

0)
u

•H
>
u
<u
w

1-H •rH • >
.-1

0) (U
M T)
3 o
b0 K^
•H
u. M-l

o

g
3
4J
O

2
u
V)

3 -C
a 4J

4J
•H

co C
•i-l J3 3

•i-, Q)
c
O
0] 0)
in o a»

CO
co ^ I

kl
cd a)

a ki a

-30-

The original model presented by Takacs (1963) has the following

formulation and solution within this more general framework. Requests

for service arrive at the system from a Poisson source. If e is the
i

time the i job enters the system, interarrival times are A = e -e ,.
i i i-1

All Ai are independent, identically distributed random variables having

an exponential distribution with expected value E(A) ■ l/\. (See equations

2.4. and 2.5.)

Models based on the simplistic assumption of constant quanta are

neglecting a primary feature of many real systems. A way of approximating

the fact that tasks often return to the queue after using only a small

amount of the maximum allowable quantum (for example, to wait for an

input/output request) is to make the quantum W a random variable. The

server works on tasks in a cyclic, round robin manner. After each task

receives a random service quantum it either leaves the system (probability

i), or rejoins the end of the queue (probability 1-Z) while the processor

works on the next task. The event, "job rejoins the queue", is indepen-

dent of both the length of quantum service, and the number of quanta the

job has received. The distribution of N, the number of job interruptions,

is geometric with expected value l/£.

fHl'V^V, n=l,2,3,...
(2.13) P(N=n) =<

|0, elsewhere

W may have a general distribution function with r.he obvious restriction

that it be non-negative. The first three moments of W are wl, w2, w3.

The total service request for a complete interaction, V, consists of the

sum of a,random number of random quanta W..

-31

N
(2.14) V = S W.

1=1 1

N has the probability mass function specified in equation (2.13). Equation

(2.15) is the Laplace transform of V in terms of the Laplace transform

of W.

(2.15) Lv(s) - S {% + ^ (s) • P(N=i)}
i=l 1 "' i

= s (^(s))1 -a -(I-«1"1

= i^cs) • ^[1-1^(8) -d-A)}

Moments of a distribution may be calculated from its Laplace transform

by differentiation.

dL (s)
(2.16) E(V) -vl- ds

,2,

s=0 ' *fl

,2 0
dLV(s)

(2.17) E(V) =v2 = —^
ds

JK.W2 + 2.(l-Jl).(Wl)
2

s=0 £

From this viewpoint total service time per interaction, V, is deter-

mined by i and individual quantum times W.. V may have any distribution

that can be represented as the geometric sum of variables having an

arbitrary distribution Fu(
t)«

For the remainder of this section, consider C, the processing rate

of the computer, to be one instruction per time unit so that W and V

-32-

are measures of the quantum and interaction times, as well as the numbers

of instructions executed. (Quantum time = (number of instructions per

quantum)/(processing rate of computer)). Using arguments that relate

this model to the M/G/1 queueing system, Takacs (1963) establishes the

following formulas for the steady state mean value, and second moment, of

response time R.

(7 \fk\ Fm - Xw2 + 2wl(l-Xwl)
(2.18) L(R) - 2(A-Xwi)

j&2 - 11

(2.19) E(R) - 6(je.Xwl)^^ . Ä(2+Xwl) + Xwl]

t2jl[6Xwl3 - 6wl2 - 6Xwlw2 + 3w2 + XwT]

[12Xwl3 - 12wl2 - 6Xwlw2 + 2X2wlw3 - 3X2w22]]

The necessary and sufficient conditions for these equations to be valid

steady state solutions are that Xwl/jl < 1 and that w2 and w3 be finite.

The term Xwl/ji is similar to the standard definition of traffic intensity,

p, which is the mean arrival rate divided by the mean service rate. In

this model the effective arrival rate is XJI which includes tasks which

are fed back from the server for additional processing. One may apply

Little's Theorem (equation 2.12) to equation (2.18) to obtain the expected

number of tasks in the system, E(M).

2.3.2 A First Extension to the Basic Model

The model described above may be extended in a number of directions

to include more features of time-sharing. Processor speed, and interrupt

overhead become explicit independent variables in the following analysis.

.33-

Previously W and V were equivalent to time units since the processing

rate was one instruction per time unit. C, the constant computer speed,

is expressed in instructions per unit time. W is the number of instruc-

tions processed before an interrupt occurs, and V is the total number of

instructions required for a task to complete one interaction. The time

spent in one service quanta will be W = w/c, and total service time for

one task will be V' = V/C.

Interrupts cause overhead. For example, systems with virtual memory

structures, such as the IBM 360/67 and the GE 645, require approximately

five milliseconds to process a page fault.3 This type of overhead may

be included in the model by adding an interrupt processing delay, D, to

each quantum w/c. D is a random variable, independent of W, having first

three moments dl, d2, and d3. The central processor continues to work in

a cyclic manner, but after a quantum interval on one task, it cannot start

another until the interrupt processing time D has elapsed. The addition

of D defines a new total quantum time, Q = w/c + D with first three moments

ql, q2, and q3. Using the fact that the Laplace transform of the sum of

two independent random variables is the product of the individual trans-

forms, one may easily differentiate L (s) to obtain its moments.

(2.20) LQ(s) = Lw/c(s) • LD(s)

(2.21) ql = wl' + dl = wl/c + dl

(2.22) q2 = w2, + 2wl,dl + d2 = w2/c +2wldl/c + d2

(2.23) q3 = w3/c3 + 3dlw2/c2 + 3d2wl/c + d3

3See, for example, the experiments performed on the MULTICS system at Ml'

by Corbato (1968).

.

-34-

Equation (2.15) still defines the relationship between W and V. The

addition of D to W does not change the users1 demands, but the processor

takes more elapsed time to satisfy a request in the presence of overhead

than without it.

Replacing wl and w2 with ql and q2 (equations (2.21) and (2.22)) in

equation (2.18), leads to the following expression for mean response in

this system.

[X{w2/cr + 2wldl/c + d2} + 2(wl/c + dl) • (l-\(wl/c + dl))]
(2-24) E(R)-iü-i 2.U-X(wl/c + dl)]

The necessary and sufficient condition for existence of a steady state

solution is that X(wl/c + dl)/j& < 1. The quantity on the left of this

expression is the effective traffic intensity for the extended model.

One can make the same substitution in (2.19) to investigate the behavior

of the second moment of response time.

2.3.3 Two Examples

Let V, the number of instructions required to complete a task's

request, have a general non-negative distribution with first and second

moments vl and v2. Consider the simplified case of no overhead and no

service interruptions (dl = d2 = 0; Ä- 1). Since w = v, this case cor-

responds to batch processing where each interaction is processed to comple-

tion. Equation (2.24) reduces to (2.10), the Pollaczek-Khintchine result

for average response in an M/G/1 queueing system. (The first two moments

of service time are vl/c and vZ/C ,)

(2 25) Em - >V2/C2 1 2(vl/c)(l - Xvl/cj
(2.25) L(R) - 2(1 - Xvl/C)

-35-

Now consider service to be quantized, but still with no overhead, D,

associated with quantum interrupts. W and i will be adjusted to hold

the moments of V constant. The probability, £, of completing an

interaction after a quantum of length W is less than one. Substituting

the appropriate variables from (2.16) and (2.17) in (2.24) one arrives

at the following expression for the quantizing model without overhead.

The final form is identical to (2.25).

(2.26) E(R) = XUv2 - 2(1-A) £vl2)/c2J + 2^(vl/c)(l -\lvl/c)

_ Xv2/C2 + 2(vl/c)(l - Xvl/C)
2(1 - Xvl/C)

Equation (2.26) is unintuitive since, for nhis model, quantizing

without overhead has no effect on E(R), the expected value of response

time. Any overhead will increase E(R). If quantizing does not improve

mean response, and actually degrades it due to overhead, one may reason-

ably ask what benefit accrues from this scheduling policy. Briefly, the

benefit is that short requests receive better than average response at

the expense of long requests. The policy of favoring short interactive

requests penalizes longer tasks and degrades overall response when there

is overhead associated with quantum interrupts.

Figure 2.2 illustrates that even though mean response remains con-

stant as more overhead-free quantizing occurs, the standard deviation

of response increases. For this example each quantum is exponentially

distributed. The total service request, V, is also exponential since a

geometric sum of exponentials is an exponential. The mean of V is held

-36-

p = .95

P ■ -9

P = .7

P = -5

^
10 E(N)

EI:N) = ih

i

2

3

4

5

6

7

8

9

10

P = »5

1.000

1.183

1.225

1.243

1.254

1.260

1.265

1.268

1.271

1.273

o = »7

1.000

1.268

1.333

1.363

1.380

1.390

1.398

1.404

1.408

l.^ill

P = .9

1.000

1.363

1.458

1.502

1.528

1.544

1.556

1.565

1.571

1.577

p = .95

1.000

1.388

1.492

1.541

1.569

1.587

1.601

1.610

1.618

1.624

Each table entry is the ratio of the standard deviation of response to
the expected value of response.

Figure 2.2

Effect of Quantum Size on Standard Deviation of Response - SD(R)

.37

constant and the mean quantum size and the mean number of interruptions

(l/jl) are varied. The input rate increases to examine the effect of

increasing the user demand. For each value of \t mean response remains

constant. Increased service variability is another undesireable effect

of round-robin scheduling which must be balanced by increased responsive-

ness to short requests.

The effects of overhead on response are obvious in the second example.

Let processor speed, C, be 500,000 instructions per second, and the mean

request for a complete task, vl be 100,000 instructions. Let the standard

deviation of the instruction requests be 150,000 instructions. The aver-

age processing time per task,vl/c,is 200 milliseconds. The probability

that a task will require additional processing after an interrupt is

.97 (1= 1/30). Thus a task produces an average of 30 interrupts per

interaction, and the mean non-overhead quantum time between interrupts

is 6.67 milliseconds. Figure 2.3 displays expected response, as a func-

tion of mean overhead delay, dl, for a number of values of X, the Poisson

arrival rate of requests. For each curve, the standard deviation of D

is twice its mean of dl. These results show commonly observed response

degradation caused by overhead delay and by congestion resulting from in-

creasing arrival rates.

2.3.4 Mean Response Conditioned on Service Request

This section contains exact and approximate expressions for mean

response time conditioned on measures of the service requirement.

E(R|N=n) is the expected response for a particular task, requiring n

quanta, which will be marked and followed until it leaves the system.

Let M. be the number of tasks ahead of this tagged job (both in queue and

-38-

E(R)
Seconds

1.4 Tasks/second

2 Tasks/second

X = 1.0 Tasks/secon

8 10 12 14 16 18 20 dl - mean
overhead
per interrupt
in millisecond

C = processor speed = 500,000 instructions per second

l/1 = expected interrupts per task = 30

vl = mean number of instructions per task = 100,000

Fipnre 2.3

Effects of Overhead and Input Rates on Expected Response - TSMODl

-39-

in the processor) as it enters the queue to wait for its i processing

quantum. Define the i wait, T., to be the time the tagged Job waits in

queue as the M. tasks preceding it receive their quanta.

M.

(2.27) T. = E Q.
1 k=l k

In this equation task quantum time, (1 , includes both the random delay D

and processing time w/c.

The first cycle (i=l) is a special case since the remaining quantum

interval of the task being served when the tagged job arrives has a dis-

tribution different from other quanta. Consider cycles after the first.

Processing quanta of all tasks, including the marked job, have the same

distribution. The expected value of the sum of m identically distributed

random variables is m times their expected value. Thus the conditional

expectation of T. given M. = m is:

(2.28) E(T.|M.=m) = IIME(Q) = m«ql, i=2,3]

Removing the condition by taking the expectation with respect to M. leads

to the unconditional expected value of T, •

(2.29) E(T.) = E(Mi) • ql; i=2,3....

The number of tasks in the system at the start of the i cycle is

dependent on system state changes during cycle (i-1). The probability

that a job will leave the system after a quantum interval is &, and the

probability that it will return to the queue is (l-£). Thus the expected

-40-

number of jobs in front of the tagged job at the start of the i cycle,

that was also in front of this job at the start of the (i-1) cycle, is

(l-l) ' E(M. ,). In addition, new tasks from the input process which

arrive during the tagged job's (i-1) queueing wait plus service quantum

• th
will also be ahead of the tagged job as it begins waiting for its i

quantum. Since the mean number of arrivals from an exponential source

with rate X during time period T is XT, the expected number of new arrivals

during (T. . + ql) is X • (T, , + ql). Taking the expectation with respect

to T. leads to the following recursive axpression for expected value of M

as a function of the expected values of M._, and T. ,.

(2.30) E(M.) = (l-l) • E(M._1) + X • (^(T.^) + ql), i-2,3,...

Specification of E(M,) and E(T1) allows one to use equations (2.29)

and (2.30) to calculate all future waits. Since the arrival process is

Poisson and independent of the service process, a new task arrives at a

random time. E(M,) is thus the steady state expected number of customers

in the system, E(M), given by applying equation (2.12) to (2.24). Cal-

culation of E(T) is complicated by the fact that when the tagged job

arrives at a busy system, the task currently being processed has been

in service for a random interval and its remaining quantum service, Q^,

is distributed differently from other quanta. As indicated in Section 1.3

Shemer (1967) did not recognize this fact and his exponential service model

without overhead contains errors due to this oversight. Figure 2.4 illus-

trates the situation.

-41-

rMimmiimmin"

®
Tagged job
arriving in
queue

I 0 0 0

Jobs which
will receive
a full service
quantum Q

Job which will
finish quantum
in process when
tagged job arrives.

Figure 2.4

Calculation of First Wait Time, Tj

Since ql is the expected value of a full service quantum, let qlr

be the expected value of remaining quantum service, Qr. of the job being

processed when the tagged job initially arrives at the queue. Let p. be

the probability that there are i jobs in the system when the tagged task

arrives. Then the expected wait in queue of this task before it begins

service is the sum of mean values of the service quanta of all queued

jobs and the expected remaining quantum service of the task in the processor.

(2.31) E(TX) = qV?! + (ql/^
+ (q^2'^ "^ + •"

00

= q^-d-Po) + q1 .5 (i'1)pi

= qi -d-Po) + q^ECM) - (i-p0))

= p.ql + ql-(E(M) - p)

where p - 1-P0 = ^/*» (equations (2.10) and (2.16))

and E(Q) = qlr = ^fi-*^» (equation 2.9).

-42-

All values necessary for the calculation of expected total wait, T, con-

ditioned on the number of required quanta, n, are now in easily computable

form.

n
(2.32) E(T|N=n) = E E(T)

i=l
n

= Ed,) + 2 E(T)
1 i=2 1

One may express this result in closed form by using equations (2.29)

and (2.30) and straightforward applications of the following identity con-

cfrning firr '3 series.

(2.33) 1 + x + x2 + ... + x" = (l-xn+)/(l-x), x/l

■ iH-1 , x=l

(2.34) E(Mk+1) = a^'^ . ECMg) + bi^f j . k=2,3,...

where a ■ (!-£) + X*ql

b = \-ql

Substitution of this expression in (2.32) leads to a closed form for

E(T|N=n).

(2.35) E(TlN=n) = EC^) + ql'E(M2) • ft=J) + ^^ * t(n-2) (l-a)-a(l-an"2)}

n~l>2,3,...

where E(T1) is given by (2.31)

E(M2) = X^Ed^ + ql) + (I-JO-E(M)

E(M) is given by (2.24) and (2.12)

-43.

Expected total response, conditioned on N, is the sum of mean expected

total wait and mean total service given that N = n.

(2.36) E(R|N=n) = E(T|N=n) + n-ql

Appendix A includes a derivation of the results of a different model

studied by Adiri and Avi-Itzhak (1969) using the techniques of this section

rather than their complicated transform methods. Their model has a Poisson

source of requests, and constant swapping overhead with exponential service

requests. The results of the two different types of analysis are identical.

2.3.5 A Simplifying Approximation

Equation (2.35) is not an intuitive expression. An interesting approxi-

mation is to let mean waiting time in queue for each cycle after the first,

E(T.), be equal to the steady state expected number of tasks in the system,

E(M), multiplied by the mean quantum interval, ql. Table 2.1 demonstrates

that the magnitude of the error introduced by making this approximation is

small. The exact result, equation (2.35), enables one to measure effects

of such simplifying approximations. Shemer (1967) and Rasch (1970) both

made approximations without realizing it and without measuring the effects.

These results show that their derivations, although not exact, are close

to the correct solutions.

Equation (2.31) is the exact expression for EtT,), the mean wait in

queue before a task begins to receive its first service. One could use

the approximation for this quantity also, but the additional complexity

added by including the exact expression is small. Using the approximation

E(T.) « E(M)-ql in equation (2.32) leads to the lollowing result for mean

total wait in queue, given that N = n.

-44.

^ 1 • o
<u o I-I in •

r-l m » o \0
a. og • o •

1 i-i CM • CN

11 II II II <u
i-H CM 1—1 CN <u 3 £ •a ■0

jr

X

i
c

vo
m
o

■sj- CN <T> VO
vo vo m m
r^ i-< r-i CTI
O r-(i-l i-l

n o r^ vt rH r-i CN OJ IN m m vt vt <f i-l 00 m Cvl in r>. i-i m a\ (^ 00 00 nn
CM CM fn m n r^. r-t m o>

Q
O i
H

U
o

tn
U
(U

Osl
•a

0) <u
i-l 10
a 3

1 <U ^ u o r>r M « o
o •

en n o ro
U O vt
<U • in II
U r-l .-(CM i-l
<U • /"S f C^ n II II »!
q) • ^w
^ m u ^ ^ w
to
a c

o
ai •I-I

to 4J
a» o
x: 0)
H c«

H
W

m
CO •
CM r^ •<f o r-v r- o vD ro o ^n CO CN m
ti

vD ^o vO in m m vt vt vt CO o rv rÄ i—t n i—1 a\ rn f^ i-H m 0^ c^ 00 m
U o • o • r-l • i-i • T-i • tN • CM • CO • to • CO • • i

in • •

w

^3
to
H

c
o

c

H
u
(4 o

l*-(

c
o

•r-t
to
en
01
N
a. I
ai
4-1
to
B

■i-i x o u a.
<

3 I
to

.a

T3
<u 0)

n-l in
a 3
E
to (U
X h
H (0

CO
u •
<U CO
4-1 •
<U CO

to c
u o
« •H
D, 4-1

O
<U <U
to C/3
i
ja M-<
H O

en
o
r-l

•

in
o

in
CM
r-v

•

II 00

^ >

u
!l

i-l CN

II II

IH CN •v -a

00

w

5

co

co

vf
CN

m
o
i-H

00
-t

VO
00

r-v

(Nl

00
CM
vO

ON
o o

o
ON
CO

i-H
rv
rv.

o
00
m

ON
00
CO

00
CTi
i—l

r-v
o
o

1-4 i-H i-H r-H CN CN CO co co i-v i—i in (J\

c i—i i-H r—1

co o
■t CN
co r^

00
ON
o

r^
r-v

vt
m
oo

CO
CN vO

rv. 00 O O vO ON m
ON rv VD o r»» r^ o
ON to I^ vO -t co co

CN CM CM CO CO ON

o
d
x
w

o

a
o
CO

■-I

u

d i-l CM CO m vo 00 ON o o
CO

o o

.45-

(2.37) E(T|N=n) = Edj) + (n-l).ql.E(M)

= p-(q2/2'ql - ql) + n«ql'E(M), n=l,2,...

A more interesting form of mean conditional response time is to remove

the condition on N, the number of quanta received by a task, and replace

it with a condition on V, the actual processing request. To remove this

condition, one must determine the distribution of the number of quanta

required to fulfill a processing request v.

CO

(2.38) E(T|v=v) = L E(T|v=v,N=n).P(N=n|v=v)
n=l

00

= p.(q2/2.ql - ql) + ql.E(M). S n-P(N=n|v=v)
n=l

To evaluate the infinite summation in the above equation, one must

first determine P(N|v=v), the conditional probability that a task will

experience N quanta given that it requires v instructions from the central

processor. This sumnation is the conditional mean of N given that V = v.

Define (X) «* f (x) to mean that the random variable X has the distribution

*n
given by f(x). Let f (x) be the n-fold convolution of the random variable

A

X (i.e., fv
n(x) = fY . .« (x)) . The total service request for a task,

^ X A-iT... "PA /
1 n

V, is the sum of N independent quanta, W, where N has the probability mass

function defined in equation (2.13).

(2.39) (v|N"n) ~f*n(v)

(2.40) (V,N) - f*n(v).P(N=n)

(2.41) (V) ~ fv(v) = 2 P(N=n).f^n(V)
n=l

-46-

P(N=n) f "(v)
(2.42) P(N=n|V=v) rr=

V

fv(v)
n« 1 2

One may now substitute equation (2.42) into (2.38) to calculate the final

form of the mean total wait in queue conditioned on a service request of

v instructions. The specific form of the result will depend on the density

function of W.

2.3.6 An Exponential Service Quantum Example

A specific example will illustrate this modal. The use of an ex-

ponentially distributed quantum, W, keeps the mathematics simple because:

(1) the sum of n identically distributed exponential variables,

when n is a constant, is a random variable having a gamma

distribution

(2) the sum of N identically distributed exponential variables,

when N is a random variable having a geometric distribution,

is an exponential variable.

These two well known facts may be verified by calculating the appropriate

Laplace transforms and comparing them to the trarsforms of the gamma and

exponential distributions.

Let the density function of W be exponential with mean wl. Therefore

the density function of f is gamma and the density function of V is ex-

ponential with mean vl » wl/jj.

-47-

-v/wl
(2.43) fw(v) = ^1— . v ^ 0

/ ,vn-l -v/wl
(2 44) £*n(v) = (v/wl) ^ . v ^ 0, n=1.2.... (Z.^o ty (V) wl.(n.i);

-£-v/wl

(2.45) fv(V) = ZZ— , v ^ 0

Substituting the above equations into (2.42) leads to the desired result

for P(N|v=v).

n_l -(!-£)•v/wl

(2.46) P(N|v=v)=li
1-il^i^fT . v-0, n-1.2....

(2.47) E(N|v=v) = E n.P(N|v=v) = ^ , v ^ 0
n=l

The conditional mass function for N, the number of quanta needed to get v

instructions, is almost the standard Poisson distribution with parameter

v(l-i)/wl. Note that the mean number of quanta needed to receive v in-

structions is not the more intuitive quantity v/wl where wl is the mean

number of instructions received per service quantum.

Substituting (2.47) in (2.38) gives a closed fom for mean total wait

in queue given that a task requires v instructions.

(2.48) E(T|V^V) = p-(q2/2ql - ql) + ql.E(M).E(N|V=v)

= ip.(q2/2ql - ql) + ql-E(M)] + ql.E(M) • (l-£)-v/wl, v :> 0

Expected total response conditioned on v is the sum of the wait in the

queue, mean overhead associated with this task, (wl + (1-Ä) .v).dl/wl, and

the service time of the task v/c.

-48-

(2.49) E(R|v=v) = E(T|v=v) + (wl + (1-Ä) .v)'dl/wl + v/c

01 + B'V

where a- p-(q2/2ql - ql) + ql-E(M) + dl

B = I/C + (ql-E(M) + dl).(l-jO/wl

The term a of the previous equation is the expected value of the

minimum response time possible in the system. This unavoidable delay is

the sum of the task's overhead time and the processing and overhead times

of the jobs already in the queue. A physical interpretation of this term

is the response time to a null input (e.g., a carriage return). Note that

after this initial delay, expected response is a linear function of service

request v. A common aspect of many current time sharing models is an

essentially linear relationship between response and service request. This

characteristic is present in the earliest models as shown by the form of

equations (1.2) and (1.3) derived by Kleinrock, but these early models do

not include important features such as random quanta and random overhead.

E(R) may be obtained from (2.49) by removing the condition on v. Since

the expression is linear, one simply replaces v with E(V).

2.4 THE TANDEM QUEUEING MODEL - TSM0D2

A characterisitc shared by almost all computer programs is that they

can be represented as repeating cycles of central processor activity fol-

lowed by utilization of the input-output, (i/o), system. Multiprogramming

designs allow different programs to use these facilities simultaneously by

-49-

switching control from a program requesting i/o service to one needing the

central processing unit. When the original program has finished i/o ac-

tivity it may queue for additional central processing time and release the

I/O facility. Time-sharing operating systems often force task switching

by making a program release control of the central processor when it has

exceeded a quantum processing limit. Figure 2.5 illustrates a basic tandem,

two server model of this organization. For analytical purposes it clearly

does not matter which server is considered the central processor and which

the i/o system.

Define the following symbols for use in the model.

2 = the probability that a job leaves the system after
a cycle of processing and i/o activity

C. = a constant equal to the processing rate of sub-
system i expressed in work per unit time

W. = the exponentially distributed random work required
from subsystem i during a processing cycle. The
expected value of W. is wl..

ii

|j,. = C./wl. = the exponential service rate of subsystem i

N = the random number of cycles required by a task to
finish one complete interaction with the system

V = an exponentially distributed random variable de-
noting the total work required by a task from
the contra! processor in N cycles. The expected
value of V is wl./A.

M. = the random number of tasks waiting in queue i, and
being served in subsystem i

■

• 50.

a o x
on
H

ts

-51-

The assumptions for the model are:

(a) the input process is Poisson with rate X

(b) queue 1 and queue 2 have unlimited capacity

(c) the service time in each processor is exponential with

meanwl1/ci andw12/c2, respectively

(d) after completing service in the second processor a task

rejoins queue 1 with probability (1-1) and leaves the

system with probability (£). The probability of rejoining

queue 1 is independent of all other state variables.

Jackson (1963) presents a number of important results for networks of

Poisson queues. A summary of many of his derivations appears in Conway,

Maxwell, and Miller (1967), Chapter 10. Call the combined input rate to the

first processor X'. It is the sum of the external Poisson input, of rate X,

and that portion of the i/o system's output which is fed back to the first

queue. This latter process has a rate of X'-O-A). Thus X', the rate of

the combined input, is:

(2.50) X' = X + (!-£) • X'

or X' = X/A

A key result of Jackson's analysis is that in the network illustrated in

Figure 2.5 the combined input processes and the resulting output processes

are all Poisson. Thus each subsystem may be analyzed as an exponential

server having Poisson input.

•52-

In the steady state each of the two servers may be treated as an

Independent M/M/1 queue with input rate X', and service rate ^ = C^/wl^

Equation (2.10) presents expected response in an M/G/1 queueing system.

This equation reduces significantly when service is exponential. Thus

expected response through subsystem i, and the sum of nhe expected number of

tasks waiting in queue and being served in subsystem i, ECMJ, are:

(2.51) £(1^) = lAti.-X') 1-1,2, ^ > X'

(2.52) E(M.) = X,-E(R.) = X'/^-X'). i"1»2» M^ > *'

Let T. be the time spent waiting for the central processor plus the

time waiting and receiving service from the I/O processor on the i pass

through the system. Since all of the stochastic subsystems in this model

are Poisson, in steady state, job arrivals and departures occur at random

points in time. For exponential service, the remaining processing time of

a task is also exponential regardless of how much service the task has al-

ready received. Thus the wait in queue 1 is E^) ^(service quantum), and

the mean response time through system 2 is l/^-X'). In steady state all

cycle times have the same expected value.

(2.53^ E(T.) ■ E(wait for processor) + E(wait + service for i/o system)

= iV^ + äipX7T' ^and^-X'
i=l,2,...

The conditional response time of a job requiring v units from the central

processor which it receives in n quanta is:

-53-

(2.54) E(R|v=v.^n) = a.li;^TT+T;]-iI7T} + v/ci. «-1,2.3...

v ä 0

p,1 and p,2 > X'

Removing the condition by using (2.46) leads to the result for expected

response conditioned on service request.

(2.55) E(R|v=v) = a + B-v/c^

where a = —; TTT +

and B = ^^(l-D'at + 1

Figure 2.6 displays the non-linear effect of increasing the demand on

the system. For each line on this graph, the processing request, v, is

held constant and the arrival rate, X, is increased. Figure 2.7 is a graph

of expected response conditioned on service request, v, for a number of

input rates X. Thus this model also predicts both a linear relationship

between expected response and service request, and non-linear response

degradation as a function of system load.

2.5 A PROCESSOR-SHARED MODEL WITH STATE DEPENDENT OVERHEAD, ARRIVAL, AND
SERVICE PROCESSES - TSM0D3

A fundamental concept of time-sharing organizations is that the

power of the central processing unit is to be allocated to all tasks

demanding service. Processor-shared models approximate actual scheduling

procedures,puch as round robin time slicing, with an ideal discipline in

which fixed processor capacity, C, is divided uniformly and delivered to

all active tasks. At every instant, each of m active jobs receives C/ra

.54-
4J

o
y-N

2 •H
g 0

u
M tfi

td ■ .

> w
•H -^ >-' o
M •n
cd ^-'

01

C J n
o a
w
11

(0

m
>.
w
IH
O

c
o

•1-4

4J
u
d
u,

d
o
6.
tn
m

-u
(U

-55-

C-4 9

PM

-56.

units of computing power per unit time. Scherr (1967) recognized that

one of the classic forms of the general "birth and death" model was

directly applicable to the time-sharing problem. His formulation of the

problem allows one to consider explicitly the number of terminals con-

nected to the system. Scherr considered overhead in a simplified manner

by reducing the capacity of the central processor from C to a lesser

value C'. The quantity (l-C'/c) represents the fraction of the capacity

lost to overhead.

Van de Goor (1970) measured a number of overhead factors in a small

time-sharing system. He discovered that a significant portion of over-

head is proportional to the number of active tasks demanding service from

the system. For example, both paging activity in a virtual memory organiza-

tion and many monitor list searching operations are proportional to the

number of active tasks. The mathematical structure of a finite source,

processor-shared model, allows one to incorporate overhead loss that is

proportional to the number of active tasks in the system. If there are

m active jobs demanding service, then at each instant every task will seem

to have its own virtual processor with capacity (l-f»m)'C/m instructions

per unit time. To keep capacity positive the overhead less fraction, f,

must be less than 1/N where N is the number of terminals connected to the

system.

Each of the N input terminals is an exponential source with rate \.

However, once a terminal has submitted a job, it is blocked from additional

input activity until the computer completes its request. The combined

total input rate for all terminals that do not have requests pending is

(N-m)«X, where m is the number of jobs actively using the processor. All

■57-

service requests are drawn from an exponential distribution with parameter

v. Thus the mean service request is l/v instructions, and the rate at

which the server processes jobs is V'(l-f.m).C. An important feature of

this type of model is that it is stable in the sense that the input rate

decreases as the number of tasks demanding service increases. Unlike

the models in the previous sections where the queues could become un-

bounded, this structure is self correcting, and a steady state solution

will always exist. Figure 2.8 illustrates the basic organization of the

model.

The standard method of solving this class of model is to form a set

of differential difference equations involving system state variables.

Let P (t) be the probability that there are m active tasks in the processor
in r

ftt time t. Since all of the individual input and service processes are

exponential this continuous-time Markov model has simple state transition

probabilities. For example, when 1 < ra < N the general state equation is:

(2.56) P (t+6) = (N-m+l).X-6-(l-f'(m-l)).v.C.6)-P ^(t)
m m-i

+ (l-(N-m)->-fO-(l-(l-f.m)-vC.5)-P (t)
m

+ (l-f«(m+l)).v.C.5-(l-(N-m-l)-X.6)-Pm+1(t) + o(6
2)

The basic principles underlying this equation are that if interevent

times have an exponential distribution with rate y, then:

(a) the probability that an event will occur during an interval

of length 6 Is y*6, and the probability of no event occurring

is (l-y.6)

-58-

o i-i

V

01 B 13
4J O
<e 00 ■rl
t- e U

M
0) 1 U I

•o O
iH 0) Vi
> 5 a

TJ 4J u
U U
a •H •o
at a (0
CO 9 0)
01 •> 03
u CO u
o e 9)

£ o i
l-l

2 g •
(0

u 4J ^
a
0) s M

at
u 1-1 4J

00

^1.

e •
01 .<;

1 0) u
a es
0) u

•o
c ji

■H 4J
•rl

G »
td

0)
J3 u
U »-
(0 9
01 o

CD
A

« i-l
1-1 cd
« •rl
c *J

•H a
E §
0) o

&
2 0)

-59-

(b) if there are k such processes working in parallel, then

the probability that an event will occur during an inter-

val of length 6 is ley 5

(c) the probability of two or more events occurring during
2

6 is of the order of 6«6, i.e., o(6).

The next steps in the derivation are to construct similar equations for

the two boundary states m=0 and ra=N, and take the limit as 6-0. Let

the derivative of the state probability with respect to time be P^d)

P (t+6)-PIT1(t)
(2.57) lUalt^Q 1 yt)

The set of differential difference state equations becomes:

(2.58) P^ (t) = -N.X-P0(t) + (l-f)»v.C.Pl(t)

p'(t) = (N-(m-l))-X-Pm ,(0 - {(N-m)-> + (l-m-f)vC]-Pm(t)
m '""

+ (l-(m+l)-f)«v.C-Pin+1(t) , m=l,2,...N-l

P^t) = X-PM At) - [(N-N).X + (l-N.f).v.C].P (t)

Statistical equilibrium (or steady state) exists when the state probabili-

ties no longer change with time.

(2.59) lim.. m P'U) = 0 v t -» ^ m

(2.60) limt ^ wPm(t) = Pm

■

-60.

To solve for the equilibrium state probabilities, one lets all

p'U) = 0 and then uses the resulting recursive set of steady state equa-
m

tions, and the fact that the sum of all of the probabilities is unity, to

compute all values of P . Setting all P'(t) to zero and reworking equa-

tion (2.58) by substituting the result for Pm into the equation for P^

leads to the following set of steady state equations.

(2.61) (l-m'f)'vC«P - (N-(m-l))'X'Pin_1, m»l,2,.. .N , f < I/N

0 ■ (N-N)-X-PM a

Adding all terms on both sides of this set of equations produces the follow-

ing expression.

N N N N
(2.62) vC« E P - v-C-f« Z m.Pm » N.\. S P - X« S mP

m=l
m m=9 "^ m=0 m m-0 m

Substituting equations (2.63) and (2.64) into (2.62) leads to (2.65), the

result for the expected value of the number of tasks demanding service from

the system, E(M).

N
(2.63) E(M) - S m.P

m-0 m

N

(2.64) E P = ! " Po i m u
m0!

(2.65) E(M) = IN-X - v.C.(]-P0)V(X-(v.C).f) , f < 1/N, f ^

Equation (2.64) and the set of equations (2.61) lead to the derivation

of P , the probability that the central processor is idle. All of the

-61

other state probabilities are expressible in terns of P_.

(2.66) Pj = N-X-Pp/lv.C.a-f)}

P2 = N.(N-l).X
2.P0/[(v.C)

2.(l-f)(l-2f)}

Pm = Pc n {(N-(i-l)).X/(vC-(l-i-f))}, m=l,2 N
1=1

m
n
1=1

where n X. = X..X-.X-...X
*—i i 12 3 m

N m
(2 .67) P0 = 1/tl +nEi ^ ((H.(l.l)).X/(v.C.(l-i.f))}]

If the state dependent overhead fraction, f, is zero, then the result re-

4
duces to the classic formula for the exponential machine repair problem.

To express mean response tine as a function of the mean number in

the system (equation 2.65) one may use the equilibrium argument that the

mean number of jobs submitted to the system per unit time must equal the

mean number served per unit time. Each of the N terminals goes through

many cycles of generating a request and then waiting for the system to

respond to that request. The mean time spent in the first part of this

cycle is l/X time units and the mean time spent in the second is C(R)

time units. Thus the mean arrival rate from each terminal is l/(l/x+E(R))

and the total mean arrival rate to the system is N times this quantity.

The service rate of the system is vC*(l-m*f) where m is the number of

tasks being served.

See Saaty (1961), p. 326.

.62-

(2.68) N/(1/X+E(R)) = O.Pn + vC -E (l-m.f).?

ml m

• vC.(l-P) - v.C.f.E(M)

Another way of looking at this relation is to note that when there

are m tasks in the system the arrival rate from the remaining terminals

is (N-m).X and thus the mean arrival rate is (N-E(M)).X. One may equate

both expressions for mean arrival rate.

(2.69) N/(1/X+E(R)) = (N-E(M)).X

By using equation (2.65) in (2.68), or more simply by solving (2.69)

for E(R). one may obtain the following result for mean response time

in TSM0D3. Both approaches lead to the same result.

(2.70) E(R) = ^^
V ; X.(N-E(M))

Figure 2.9 illustrates mean response as a function of N, the number of

terminals connected to the processor, for a number of values of f, the

overhead loss function.

Each of the models developed in this chapter focusses on a different

aspect of current implementations of tMe-shared computing systems. Th«

inherent complexities of queueing models make the simultaneous considera-

tion of all such features very difficult. The next two chapters present

empirical investigations of both simulated and actual systems. Response

time measures of these more complex systems are compared with the predic

tions of the analytic models of this chapter. Chapter 5 contains a number

of examples of how one may use these models.

-63-

O M

u C
<u •M

1 0)
c 4J

II
m

o m

i o •
CO
o

4-i •
1-1
c
3

(0
"c" d
o o

i-l •M •H
(0 u 4J
e o U

3
M 2
u w

<u CO (0
4J d d

•i-i •ft
H
0) o o
a. o o

o o
in •s n
.—i o o

o o
i-i in fsl

It II II

^ u >

o

o

(0
'—^ rO
cc d
w o
u u

en

o
§
<u

1
o
1-1

c
4)

SB

■64.

CHAPTER 3

SIMULATION STUDIES OF SYSTEM BEHAVIOR

3.1 INTRODUCTION

The results of Chapter 2 provide new expressions relating response

time measures of system performance to parameters such as overhead loss,

processing capacity, service and arrival distributions, and interrupt

probabilities. To keep results easy to compute, these analytic models

are based on many simplifying assumptions concerning system architecture

and user behavior. In addition, equation (2.49), the least complicated

expression for mean response conditioned on service request, depends on

the approximation that all cycle times after the first are equal to

the mean number of tasks in the system multiplied by the mean quantum

interval. The goal of this chapter is to explore the robustness of these

results when they are applied to systems that do not satisfy all of the

assumptions. The following experiments range from simulations closely

related to the analytic models of Chapter 2 to more complex designs based

on features of an operational time-shared system.

The first simulation is an exact model of Figure 2.1, with overhead

and quantum times both having truncated normal distributions (both were

constrained to be non-negative). The second and third models are based

on a tandem queueing structure like that analyzed in Section 2.4. The

last simulation in the chapter includes a detailed model of the schedul-

ing algorithms of TSS, an operating system for the IBM 360/67. Task

dispatching in this system Includes dynamic priorities, and is much more

complex than the cyclic, round robin, scheduling of the previous models.

-65-

The goals of the experiments are:

(a) to determine how well the equations of Chapter 2 predict

performance characteristics, such as expected value of

response conditioned on service request, even though the

models differ from the assumptions underlying the previous

derivations

(b) to study perrormance characteristics that were not derived

analytically but are easy to examine by simulation and

which lead to a deeper understanding of feedback queueing

systems

(c) to determine if a complex model based on an operational

system exhibits the same basic characteristics as the

simpler models.

3.2 EXPERIMENTAL METHODOLOGY

3.2.1 The Simulations

All of the models are implemented in SIMULA, a general purpose

simulation language which extends ALGOL in a number of important dimen-

sions. In addition to all of the features of ALGOL, the language pro-

vides good list processing capabilities, a powerful co-routine capability

including a full range of process scheduling mechanisms, and a number of

1
statistical procedures.

For the first three studies each experiment consisted of a 100 task

initialization period, in which statistics were not gathered, followed

The reader interested in SIMULA is directed to Dahl and Nygaard (1966),
Unlvac (1967), and McCredie (1970).

-66-

by a production period In which statistics were calculated for 1000

casks passing through the system. Pilot runs produced Initial estimates

for running times and variances of the sample statistics. Each experi-

mental run of the first study required approximately 10 seconds of Unlvac

1108 processing time. Since the second and third models have two pro-

cessing bubsystons in tandem they required twice as much computer time

per simulation as the initial model. To simulate the processing of 1000

tasks in the complex model described in Section 3.5 required about three

or four minutes of 1108 time. As a result of the expense associated

with the detail of this model, only a few experiments were perfonred.

Each run represents an independent set of statistics since the

models were initialized with different starting seeds for random number

generators, and all statistical counters were reset to zero. The initiali-

zation period to remove startup transients preceded each run. Appendix B

contains listings of the simulations used for the studies.

3.2.2 The Statistical Analysis

One must use statistical tools to analyze data from stochastic

systems. A striking characteristic of the data from the simple queueing

structures of Sections 3.3 and 3.4 is its high variance. The estimators

used to determine model variables come from independent experiments. label

the value of an estimator from simulation run 1, X . Each independent

2
X. is drawn from a population having a finite mean g, and variance a . An

estimator of p, is the sample average X, which is based on all of the ex-

periments and is Itself a random variable. In Section 3.3 and 3.4 each

study consists of 20 independent experiments (n = 20).

-67-

- 1 n

(3.1) X = i. E X,
ni=l i

2
The population variance, a , for each variable, is unknown in the experi-

ment, but one may use the following estimator of it.

n

(3.2) s2 = -i- ^ (X.-X)2
n-1 i=l 1

To scale X so that it has a mean of zero and.variance of unity,

subtract g. from X and divide the result by (s /n)2.

1 1

(3.3) Z = (X^)/(s2/n)2 = (n^OC-pj/s

The central limit theorem states that Z becomes normally distributed with

mean 0 and variance 1 as n becomes large. Z does not have a normal dis-

tribution for small n because it is based on the random variable s2, an

2
estimate of a . Z has a Student-t distribution which deviates from the

Normal distribution for small values of n, but approaches the Normal

when n is large (e.g., n > 30).2

One may form a confidence interval for sample averages by locating

points which partition a desired percent of the area under the density

function for the Student-t distribution. For example, one may compute the

probability that an interval based on sample statistics covers the true

mean, p.. Using the Student-t distribution with n-l = 19 degress of freedom,

one finds that in these experiments the probability is .95 that the interval

of equation (3.4) will contain the true mean, y,.

2
See Mood and Graybill (1963), pp. 251-253 for a discussion of the estima-

tion of mean values when the variance is not knowr and pp. 149-153 for a
discussion of the central limit theorem.

-68-

l I

(3.4) X - 2.09-(s2/n)2 ^ ^ ^ X + 2.09«(a /n)

3.3. A SIMULATION OF TSMODl

3.3.1 The Model

TSMODl, the feedback queueing model studied in Section 2.3 and illus-

trated in Figure 2.1, is the subject of the first validation experiment.

The following parameters were used in the study:

F (t) = F (t) ~ normal distributions (mean=.05, c[=.015)
w u

wl/c = dl = [j, = .05 seconds

w2/c2 = d2 = a2+(^)2 = .002725(seconds)

w3/c3 = d3 = (u,)3+3-nTr2 = . 00015873(seconds)

Processing rate = C = 1 instruction/microsecond

Arrival rate = X = 1 job/second

Probability job leaves after an interrupt = Z = 1/8

The statistical estimators used to summarize the date are:

(3.5) R = the sample average of response times

1 " ■ ■=■• S R.
n 1-1 1

where R = (time task i leaves the system - time tack i
i

entered the system)

(3.6) SDi'R) ■ the .'■ample ntandard deviation of response times
1

I n 2. 2
- iTT'S (R.-K)']

II i i=l L

-69-

(3.7) t. = the sample average of the time spent waiting until

a task receives its first processing quantum

1 n

= —* E (time task i waits before beginning its first
Is» 1

processing quantum)

(3.8) PO'100 = the percentage of time the processor was idle

= 100 • (time processor idle/total simulated time)

(3.9) B = least squares estimate of slope of response time as

a function of service request (where v is service

request of the i task)

n n n n „ n „
= in • E R.-v - S R. * E V.)/{tl • E v - (Ev) j

i=l 1 ^ i=l 1 i=l 1 i=l i t^l1

The analysis of Section 2.3 presents exact solutions for the expected

values of R (equation 2.24), SD(R) (equation 2.19), t, (equation 2.31),

and P0 (equations 2.10 and 2.16). Equation (2.49) is an approximate ex-

pression for the expected value of response time conditioned on service

request. This equation contains a parameter B which is the slope of the

conditional response time. The approximation is based on the assumption

that the service request, V, is an exponentially distributed random vari-

able, and on the mathematical simplification that all cycle times after

the first are equal to the mean number of tasks in the system multiplied

by the mean quantum interval. The next section contains comparisons of

the results of the simulations of TSMODl with the analytic expressions for

these variables.

-70.

3.3.2 The Results

Table 3.2 presents all of the experiemtnal results for each of the

five variabias for 20 independent runs, each of which represents 1000

observations obtained after an initialization period of 100 tasks. The ^

9 9 9
experimental values are combined to form the estimators X, s , s, (s /20)

defined by equations (3.1) and (3.2). Table 3.1 suranarizes this data by

presenting the 95 percent confidence interval from the experimental data

and the analytic result from Chapter 2 for each of the five variables.

All of the analytic results lie within the confidence intervals. The

samples display the high variance inherent in queueing systems of this

type. This particular sample exhibits slightly heavier congestion than

predicted by the analytic solution. For example, runs six and ten are

very heavily congested experiments. Figure 3.1 is a typical histogram of

response times in TSMODl.

Variable

R

SD(R)

PO-lOO

tT

i

95 percent confidence
interval [see eq. (3.4)1

3.35 S E(R) * 4.51

4.47 ^ SD(R) ^ 6.31

17.38 * p0 • 100 S 20.43

.34 s E(t1) s .47

8.33 i E(B) S 11.28

Sample
Average

Analytic
Result

3.93 3.81

5.39 5.58

18.90 20.00

.41 .39

9.81 8.5^

TABLE 3.1

Comparison of Experimental and Analytic Values for TSMODl

-71

•«I
vo i-H ro
m I*« In
■ • •

00 !-*■ O

m
CM

co 00

0\ r-l
r^ oo

CO
IT»

U1 \D O t-<
O ^ CM O CM

cn io t-i ON r^
ON VO 0> IT» r-l

o
oo

o* r^ ON o\ ut oo vO so

o
• • •
o I-H r^

>(U

•-t ■& m o
oo o> i-i r^.
• • • •
0X0*0

en o ro o
■O 00 CO rH

N O
CM CM

00 CM
CM

o
CM

CM
CM vo
tn en

CO vO ^•
«n CM <-i

CM
CM

00 ^ CM s*
rl r-t f* rl

CM

CM
CM

00
oo r^ vo
O Ov .-I

CM

CO O CM CM
vO CO •-< CO

O i-H i-l 00
CM CM CM «-I

o
Ov

00

vO CO
CM r^

ro

•«I
m
co

CM
CO

CM
eo

sO 0>
co r^

ov r>.
eo to

CM vO ov r**
CM <*

CM
CO

CM oo
CM

oo
CM

oo
ro

00 CM St CO
O i-l O

OS

Q
m

i^. 9 oo m •rt CM CM OV CO r^ r^. 00
r

St

O
• •

IT»

CM • CO •
Ov •
o

CM • CO • CO
•

<*

OV
•

oo
• •

>*

^ !3 o CM
iO ON ro

o

•o^vococomooco

ov
ro ä vO st

O» st

m co f«

■«I
CO
St CM r-l

CO CO

CO

CO

o
IT»

00
CO

CM
CM

OV OV
VO lit

co Ov CM C^
f'- CM OV eo

CO C* CO CO CO vO ^

Ov
o

CO

Ov ro
oo r»

vO OV 00
oo r^ vO

CM CM CO

CM CO in vo OOOvOi-ICMCO>*invO 00 Ov

to
Ov

CO
m

St
CM

00
CM

1-<|CM

«Ml IX to

o
CM

CM
(0 10

Percentage
of jobs

-72.

50

40

30

20

10

« *

I-
• • *
• • • •

j 1-
• • • • ,h-H:

1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5

Response time in seconds

Figure 3.1

Histogram of Response Times for TSMODl

-73-

The analysis of Section 2.3 predicts a nearly linear relationship

between service request and mean response. To test this result, each

task recorded both its service request and its transit time through the

system. These data were separated into equal service intervals (and

an additional overflow interval) and processed to calculate mean job

response for each interval. Table 3.3 displays the average response,

and the number of observations on whi-.h it is based, for five service

intervals for the 20 experimental runs. Results for the X, s2, s, and

2 2"
(s /n) are also displayed.

Figure 3.2 is a graph of the data of Table 3,3. Each point is the

sample average of the observations in that interval, and is placed at the

mid point of the service interval. The vertical bars through each point

represent the sizes of the 95 percent confidence intervals computed using

equation (3.4). The solid line connects the sample averages and the two

broken lines form an area in which the true value of mean response con-

ditioned on service request lies with 95 percent confidence. The increas-

ing variance with service comes from two factors: (a) the number of

observations decreases in the intervals having higher values of service

and (b) variance of response increases with service request. Thus long

jobs experience longer, and more highly variable, response than short

jobs.

-1h-

v
>
VI

oo

V
>
V)

in

V
>

VI

m
m

V
>

VI

m

>
V)
m

d
0)

:
■i-i
H
<u
a x w

<N r-H
i-(

oo
i-H

CM
i-i

<!• CO ON
i-H

00
i—1

r-4
i-H

00 ON CO
i-l

CM
i-l

00 oo CN
i-H

CN ON
i-H

5 vt
o

o
o

o 00
oo m i-H

o
ON

OO
00

vO
m

m
CN

o
o

O
m

ON
o 00

ON
m

o
ON

NO O
CO

NO
CN

00
m

O NO
l-v

O r>. i^. t^
<!■ IT»

1-1
oo oo r^ CN

l-H
NO 00 (N

r-4
(^ 1—1

1-4
NO r^ oo 00

i-H
r-v ON i-H

i-H
CO

IN 1-1
(X
CN

o
(N i—i

ON
i-l

CO
r-(

CO
CN

00
CN

oo
i-i

CO
CM

m
i—i

o
CN CM

CM
CN

r-v
i-H

l-v
i-H

CM
CN

Pi o o
i-l

o
m

i-H
r-t

00
1^-

o
1-4

co
r-

rH
CO

ON

vO
1^
00

CN
CM

ON
o

i-H
CO

NO
m

O
CN

CN
m

CO
^1

00
<t

\D m 00 m in CO vJD 00 NO O
r-l

CO NO vO vO ON m m m 00 m r- <!■ CN

r-t o-)
IN CN

OO
in

00
CO CN

o
CO

CO
co

1-4
CO

ON
CN

NO
CO

i-4
CO

00
CM

i-H
CN

o
CO

N
in O

m
o o

00 ON
i-H

00 m
CO <N

o
I-H

ON
CO

ON
0\

CN
O»

o
NO

i-4
O

CO
NO

i-H
r-v

CM
m

m
i-H ON

ON
ON

m

L', n m <t <f ON CO co m O
i-H

m <it NO co NO co vt <f in CO m CO i-H

o
m m m in

o
m

m
in m

CO ON
m

I-I vO
m

ON
m

o NO
m

ON
m

ON
in

in
m

m NO
m

00 00 in
i-i

CN
i-4

ON
00

i—i
ON

o
1-4

ON
ON

m
m

r--
CN

ON
CN i—l CO

m i-H
CN vO

00 CO rv
i-H

00
o C-J

m (M CM ro m ^> CN CO CN NO co CN -* co «* CN (N CO CO CN CO r-4 1-4

in
o OS o

1-1
i ON

ON ON
o
ON

CO
ON

NO
r .

i-H
ON

m
oc

co
ON ON

■-I
UN

CM
O
1-4

o
ON o

i-H

CO
00

CM
i-l •
i-l

o •
1-4

m
m •
i-H

m
o •
i—*

en

•
i—i

CN

•
<N

i-H •
1-1

m •
i-i

o
•

i-H

00
CO •
CN

t-i

•
i—i

NO
i-l •
1-4

i-4
m •
i-i

CO
CN •
i-H

m
ON •
i-i

m
1-4 •
i-H

CM
O •
i-l

1-4
CO •
1-1

CM
00 •
i-H

00
O •
i-H

•
i-H

1-4
CN •

vO

•

r-l

o
i-H •

tM

o
CM

.-l CN (7-1 -* in k0 r^ cj ON O
r-H

r-l
1-4

CN
1-4

CO
I-H

<!■
i-i

m
r-l

vO
r-H i-i

00
r-l

ON
i-4

O
CM

CN
IX »

CN
m CO

CD
U
c
(U

B a
■Hi!;
UU
01
D- tn
X Ö

r-l
03

OJ

4J 5
CrH
O o
0 o

i-H 4-0
Q E c Q 3 0 s ^4 O
m o OJ
H O m

i 4-1 0)

»X! u ^i JJ
(0 •r^
<u Wt)
3 fi
cr « 5
TJ JB

DS u *
i-H

0) »rt
O <-> >

•iH to u > Xl <D
^4 S u
OJ O ß
in Ü.H

(U
<4H <Si oi
0 (H

Cu
c ■rH

CO O c
" -iH -O-r-l

* U CU
^ u U oi

T
ab

le

a
 F

un

3 U

ca oi

0 cr
OJ

U) " y^
(0 >

s-' bD
<U c .
B 4J.H4J

•rH
H

in > r;
<U (fl <u

^■g 0)
m 0) M .H
C I-* Xl QJ O O O.
CL 0) ■r- X
to u S
<u •* u as > o

M IH rj
01 <u «
on W W 0'
nj 0)

O-H 0 > 4-J1+-I < i—1
TO OJ C

K « o
0) O"
w a
C en cj

•H D u
P 3

JÜ m
um
« OHH
OJ 0

_ 5)
C 60^
'■j M lU
-C UJO

x?m
tS ifl Ö

01

-75- — o

y^ tn

— c
(A O
w O

-76-

3.4 A SIMULATION OF TSMOD2

3.4.1 The Models

TSMOD2 is similar to TSMODl with an additional processing system

after the central processing unit. This extra queueing subsystem repre-

sents an input/lutput (i/o) system for program swapping, paging, and

file handling. Figure 2. 5 illustrates the structure and Section 2.4

includes an analysis of the model when the service times in both systems

are exponential. This section includes simulations of two versions of

TSM0D2. In the first (which is identical to the model of Section 2.4)

both the processor and the i/o systems have exponential service distribu-

tions and there is no explicit overhead delay. In the second, the pro-

cessor is identical to TSMODl (an overhead delay and then a processing

quantum) and the i/o processor has a uniform service distribution which

is more representative of rotating external storage devices than an ex-

ponential distribution. The following parameters were used for these

two models:

Server 1

Server 2

Version I

Exponential distribution
with rate 10 jobs/second.
No overhead.

Exponential distribution
with rate 10 jobs/second.

System arrival vate= 1 job/second

Probability job leaves
after an .interrupt ■ i

Version II

Overhead and service
quanta both have Normal
distributions with
mean = .05 seconds and
standard deviations =
.015 seconds (rate =
10 jobs/second)

Uniform distribution be-
tween 0.0 and .2 seconds
(rate = 10 jobs/second).

1 job/second

1
8

-77-

The statisitical estimators used to summarize the data are:

R ■ sample average of response time (previously defined)

SD(R) = sample standard deviation of response time (previously defined)

(3.10) M.. = sample average of number of tasks in, and waiting in queue

for, server 1

1 •!
= - J (number in queue 1 + number In server 1) dt

0

where T ie the simulated time interval of the experiment

M- = same definition as M, except that queue 2 and server 2

replace queue 1 and server 1

B = least squares estimate of slope of conditional response

time (previously defined)

Section 2.4 contains exact expressions for the expected values of

M, and M. (equation 2.52), and for the mean value of \l (equation 2.55).

The unconditional mean response time, E(R), may be obtained from equa-

tion (2.55) by remaining the condition on V. Since this equation is

linear in v, one simply replaces v with its expected value E(V). The

results of Version I verify this analysis and provide insight into the

variability of the results. Version II is included to test the effects

of changing the distributions of the overhead delay and the processing

requests. The next section contains comparisons of these two versions

of TSM0D2 with each other and with the analytic expressions of Section

2.4.

-78-

3.4.2 The Results

The results of the simulations of TSM0D2 are presented in a manner

similar to that of Section 3.3. Table 3.4 summarizes the results of

Version I by presenting the 95 percent confidence intervals for the

data and the analytic results from Section 2.4 for these variables.

Table 3.5 displays the xesulLs for each of the variables for the 20 ex-

periemntal runs of TSM0D2 - Version I. As in the previous section, each

run represents 1000 observations obtained after an initialization period

of 100 tasks. All of the analytic results lie within the confidence

intervals. To test the prediction of a linear relationship between

service request and mean response, each task again recorded both its

service request and its transit time through the system. Table 3.6 cjn-

tains the results of separating the service requests into equal intervals

and calculating the sample averages for each interval. Figure 3.3 is

a graph displaying this data and the 95 percent confidence intervals

for response as a function of service request.

95 percent confidence
Variable interval {see eq. (3.4)1

Mj 3.58 £ £(1^) ^ 4.29

M2 3.59 S E(M2) ^ 4.45

R 7.24 <■ E(R) s 8.61

B 7.89 5 E(B) ^ 9.20

Table 3.4

Comparison of Experimental and Analytic Values for TSM0D2 - Version I

Sample
Average

Analytic
Result

3.94 4.00

4.02 4.00

7.93 8.00

8.55 8.88

-

-79-

es
OS

CO
in

00 00 00
in

OS CM in 00 OS
00 00

o
vO

os

'SI en ro m CO CO CO CM vD co «* -j- >* co es m

csjcsir^r^cocor^-j'
vO^- C»^•-4cMO^l-l CM

CM
OS

CO
v£> 5 3 in

oo
OS
CO 5 t OS

CM
vO
CM

m
vO

'SI CO COCO«*COCOCOCOCO(Nin<*«*»*CO<f CM m

iPQl

vO «M vO O -* i-i os vO CO
m CM CM OS m r^ in o CM

O CM
i-H O

CM
m

CO
o CM

CM
CO

m
OS

Os

O» 00 vO OS r^. os vOi-tOOOOSOsOSOOvO

OS S

r>. os

o
CO

vO
o

o o
OS

CM
m

oo
CO m

m m
OS i-4 CM os

in m OS
CO

OS ,-1
in «*

OS m co I-I oo os os OS vO

■oäl
vO Os 00
CM oo 00

CO VO OS r-4
CM 00 OS

o
m

m
CM

00 CO
1-» <t

o
OS

OS OS
in CM

oo vO ao to vO oo ON oo oo oo oo oo in

CM
o

CO
00

<-. o
OS CM

00 vO r^.
in r^ i-<

CO

in
»n as

o
CO

00 I-I i-H

CO CM >-l
CO 00 -*

OS CO

CO
as

m CO
CO

u
<u
X
tä

r-l CM CO m vo 00 OS O rH CM CO m vo oo OS
CM

IX tn

—iN
t V

CM

CM
cn in

J3
CO
H

o
•ni
in
U
(U /—N

> r-l •
i <r •

CM CO

n o C
JF) o
to •I-I
H 4J

U

(1 a)
O t/i

c/i c
4J •r-l
C
a) ■o
F u

■U >.
u cfl
0) ,—1
a a
« U)

UJ •H
-a

u
n a)

LW VJ
CO

U)
4-) u;
i-l M
I 01
in 4-1

m a)
Bä g

(0
r. u
r> A
•H a
U
m ij

^-i =i
-) a
F d s H

-80-

0> vO

V

>

00

V

>

VI

vO

V

>

VI

m

V
>

VI

eg

VI

>
VI

SJ
00

vO

en

o

vO

l>4

o
CM

CM 00
CO

00
CO m

(N
vt co CO CO

o
m

CM as
co

00
n «
00

o
•

CO
o

•
00 o •

1-1

•
1^.

vT •
o
00 •

CM
CO

•
m

CO
vO •
l-l

o
o

•
o
I-l

o •
in
in •
as

a*
<f

o
•-*

CO

■
ON

sO
m

•
00

00

•
m

as

•
r-l
t-1

00 •
00

co
vO •

CM
VD •
r-l

vO
CO •

00 00
CM

00
.-i

CM
m

CO
m m m

in
m m

■-4 m
m

CO
in

ro
m

co
in

a>
m

as
in

CM
vO

o
in

as
o

CO r-i
O g o o

o
CM
CO

CM
in s£> o

CO
SO

sO o o
CO

vD
CO a\

m O
m

00
in •

in
co • • •

00 m <t vO r~. sO -* o 00 vO sO hs a\ vo m oo vO CM i-i

i—i 00
es CM vO

.-H o
vO

as
vO

CO ^-4
vO

sO
sO

vO
vO vO

m oo co
oo CM

O
as
as

CM
CM

m
a\

o t O i-l CO
oo

o
m

m
CvJ

o
oo

m vo m g m m st -a- -tf mmmvi-^tmcnvo

in
CM

in

CM

vO

CM
m

oo
co

vO
co

as
vT

oo
oo

o
co

o
as

CM

oo

vO
as

oo

CO CO CO CM CM CO

o
o

CM

in
o
as

oo
CM

ä

o
o

CO
as

in
oo

co CM

in

as
(M
O

CO

m

«i-CM-^-^COCOCOCO

J-l

m
00
m

vO vO
m

m
CM
i-H i-H

00 o
.—1

as
CM
i-H

^-1

■-I
O
r-l

o
o
in

i-H
CT>

as
sO $

CO
vO vO m

CM
CM

ir,
<JV

CM CM i—1 •-I CM r-l 1-1 i—l ^H i-H >-l Csl

vO

CO

C^I vO
T-t O

m
oo

vO m

oo

co

o
CO as

CN
CM

m

CM
vD

ON

o r^
as i-i

i-H «TV

rH CM CO in vo oo as in vo oo as

r-ljM

CM

o
CM

CM
en co

3
c
a)
i

•i-i <u
M Ä
(U 4J
a
x in
0) C

M (U cfl
ja 4-1

C u d
o o
•H cn o
Ifl C
u •H d
& CO g > 4J 3

C i-l
1 O O

o CJ
CM
P d 13
O § d
SG 3 o
CO r-l o
H O 0)

•
u U)

u (U
4J in Xj
cn ^ 4J
<U •H
3 VH T)
a- d
<S3 (U nJ

PS x;
4J •*

<u i-i

o M cd
•r-l s-^ >
> in u
u ■o (U
<u d 4J
Ol o d

o •rl

<+-! 0)
o in 0)

x: c d 4J
sO o •H

. ■•-> d
CO *-" X) •i-i

y <u
0) c n cn

,-< 3 3 4J
X> (n in cn
« ca (U
H « (U 3

B cr
U) 0)
cfl

>
VJ

(U N^X oo e d • a *J •H *J
H to > c

01 CO OJ
0) 3 xi e
tn cr •H
C 0) K M
O ^ XI 0)
a O CL
(A 01 •■-1 XI
(U o <U
a: •H u

> o x:
aj ^ IH CJ
oo (U CO rt cn cn (U
u OJ
(U m B ^ > o •a o
<

r-l

4-1 IH

nJ 0) in
> in JD
V4 d O
4) O •i-i
4-1 a
a cn x:

•H <u O
^4 3

£ CO
o IH
CO O IH
0) o

d to u
■rH CO <U
XI U XI
4-J <u E
•H > 3 ^,> co d

0)
4-1

M\

: ■; ■ ■ ■

■81

(0
T3
C
O
o
0)
(/I

c
•H

(0
<u H
3 cr r
01 0
M •H

</]

0) U
(j 0)

■H
>
M 1
0)
w CNJ

Q
O
X
tn
H

•vO

u
3
So

•r-l

CO

0) a
D
0)
a;

cu

>
a)
tn

C
o

-a
0)
(3
O

•H

—I

c
c
o
0)
tn
Ö
o
c,
m
D

OS

TJ
0)
(J
u
u
r.,
x w

ui--.:.--

-82-

Table 3.7 contains the experimental results for TSM0D2 - Version II.

Each run represents 1000 observations obtained after an initialization

period of 100 tasks. To test the prediction of a linear relationship be-

tween response and service request each task again recorded both its

service request and Its transit time through the system. Table 3.8 con-

tains the sample averages of response time for various service request

intervals and the number of data points in each interval. Figure 3.4

is a graph of this data including the 95 percent confidence intervals for

response time as a function of service request.

TSMOD2 - Version II differs in a number of ways from Version I. Since

neither the central processor nor the l/o system have exponential service

distributions, the outputs and thut^s the resultant inputs to both systems

are not Poisson. Both service distributions have a coefficient of varia-

tion less than an exponential and thus the outputs from the servers are

more regular than from a Poisson process. This increased regularity of

service and input pt »cesses reduces both the congestion in the system and

response times. The analysis based on exponential input assumptions over-

states congestion. Queueing theory offers little help in the analysis of

non-Poisson queues in tandem. For example, if the methods of Section 2.4,

in which each subsystem is treated as an independent queueing system, are

applied to this example and both subsystems are treated as independent

M/G/1 queues (with Poisson Input rate X' " 8) the mean number in each sub-

system would be ECM,) = 3.809 and E(M2) = 2.
Q33. The simulation results

show these value" to be M, = 2.60 and M- = 2.3&i or about 25 or 30 percent

less than predicted by an M/G/1 model. This example indicates how non-

radical changes in modeling assumptions may force the analyst to switch

from analytic techniques to simulations to get more accurate estimates of

system parameters. Note, however, that the linear relationship between

-83-

en
(N o

'SI •
CO

m r-4 n in r^- o o vO 00 <!• o
00 ■£> in r-l o vO o ^> o en <t

00
m

m
o 00 m

in

CS>-ICMCNC«4P>ICMrs| rHm(NP>4CMCN4CM(N|CN

<T* 00

"sir .
O

in
oo

m
CM

m n oo o
oo

o oo
CM en

oo
oo S

00
en o

CM CM «S PJ CM CM CM CM CM CM cn CNI en CM

c
o CM

I CO I
^D

CM ro i—i <T> CM in r~ r-l in ON o o
00 en r-l r-- o CM o (N m e 00 VÜ

ON ro n-(CM >-< o> <f

.-I <T>

• •
o

oi l-l
m vf r-t vO o o> r-l 00 <)• m <r

^^ r-H in <f vO C-l o r« x> CM ci <f
Q
CO

• • • • • • • • • • • •
t^ in -* m m m in in vt <f t-^ m

m vo CM
oo

00

vo in m

00

CM CM

r^ oo

m

CM
ON CM

>Ct\
ON

m
o ä in

o
in

CM CM o>
CM

oo
(7-1

en
OS

^ m -.t ro vo -*

o

vO

CM
ON

in o
o

m m

in CM
m

CM m in \D oo ON CM <n ■n ^o oo ON

i-l|<M

o
CM

CM
IX «I

«I
H

o
•r-l
U) ^*\
V-i -H

V •
t> <f •

1 tn

CM 0
Q o
O •H

X t-l

tS) Ü

H <U
l/)

d
o d -,-(
m
JJ X)
gj OJ I ^

tfl
•r-l H
M a
<D in
& ■r-l

X 1? w
0)

M M
o tfl

LH

</]

tfl u
4J 01

■-I ■u

3 OJ
en 0
0) tfl

M h
nj

d a
0

■H 4-1
4-) 3
tfl a

i-J a
3 H

a N—'

■H
Cfi

-84-

v
>
VI

00

VI

>
VI

V

>
VI

V
>

VI

ro

V
>

VI

4J
c

I
v a
X u

1-1
r-H

CN >*
i-l

m 1-1
r-H i-i

CM
■-1

CM
i-i

T\

r-l
o
1-1

00
i-l i-H

en
i-H

r- CM
rH

rH

l-H
m
i-H

o
l-H

rH

CM
00

o
CM

o
m

vO
CM i-i

i-i
i-i

o
in

o
|

OS

CM en
m CM

O

os
CM o

en
00

en
Os

CM

CM

CM
i-H ft CTs vt

m
in

t—4

ON CM
i-l

o
i-i

ON 00 i-H
i-i r-l

CM
r-l

>*
1-1

i-H

1-1

O
i-l

i-H
l-H

sO
rH

Ol en
I-H

OS l-H
rH rH

i-H

rH
m CM

03
l-H

oo in Os 00
r-l

i-l
CM

oo
CM CM

Os
i-l CM

m
i-H 1—1

oo
rH

OS

l-H

rH m
i-H

en
rH

in
l-H

en
l-H

oo
rH

oo
i-i CM

.—i
en s 0>

oo
as
i-H oo CM

i-l er.
o

oo
o

en
m

1^- en
Os

o
00

oo
00 Os

SO

sO
cn
oo

00 00

en

en
^-1

00 r- OS o
i-H

t~- 0^ Os o> oo CM
i-i

OS oo I-» rH
l-H

o
l-H

o
t-H

o
l-H

CO <3S a\ CM i-H

CM

CM sO m
CM en

CM -*
n en en en

OS

CM

OS

CM

00 o
en

(M
<n

CM

CM

o
ON

in
rH

i-i r-l
m

CM o
CM CM

OS i-i

cr«
1-1

en
i-H

sO
en
CM

oo
m

O
o o

m
m

en
00

OS

Os
sO
00

sO CM
i-H

m
CM

t-~ vO vO SO so in m sO so m en \D r^. sO r^- r^- OS r^. sO m «o i-H i-H

r-.
m

m
vO

oo i-i

m m m J3
i-i

sO

o
m

00

<J
,• m

CM 3 in
in

00

m
CM
in

i-H o

CM CM en
1-1

m CM $ m
i—i

CM
1^ CM

o
CM 1-1

00
00

(3S

m
(N in o

o m
cn
en

(N
00

rH

CM

en as O
l-H

vß <!• m <»• <!■ CO <f <f vt- •* m en <!• en m <f in <f en <f -*

as 00
CM
1—1

r-H

i-i
o
1-1

OS o
1-1

i-H
a-. Os

1^-
00

sO
o
1-1

i-H
CTs

i-i

o s OS

o
rH

m
o
l-H

i-H

OS Os
m
OS

m
l-H
rH

sD
OS

CM in m
CM
oo

o
o sO

sD
oo

sO
o

Os

SO

1—1 en
00

CM
i-H

CM
OS

o
o

o
sO

o-.
l-H o

OS

00 oo

>o
m
o CM

m
m
o

CM ■-i i-i 1-1 (N r-l i-i CN i—l 1-1 CM i-H <N i-H CN rH CM <N i-H rH l-H

o
CM

r-i CM m -1- m sO r^ 00 Os o
1-1

1-1
i-H

CM
r-l

en
rH i-H

m
rH

sO
rH t-H

00
rH

OS

r-H
o
CM

iX
rM

tn U)
CM

m

•H (U
u x:
(U Q
o.
X tn
a) e

•iH

0) «0
A 4J

u d
o

in u
HJ C
l-H •iH B

c 4-1 j3
o c i-H

•iH o o
(0 y 0
u
ai d •d "> E 5

3 o
i rH u

o S
CM u tn
n
Q i-l a) 1 (fl x:
CO u 9
H •iH

i

l+H 'S
a> to

W Si
tn u •V

i i-H

3 •» to
o* ^s >
(U in u
03 •o (U

C 4J

0) o a
u o •H

•H a)
> cn (U
N -C
01 C S

X3 CO •rl

c
tn ^ T3 •rl

" O <0

I c u tn
3 4-1

3 Q cn cn

t - (0 0)
(U 3
p cr

i 1
3 •t M

PH > ^--' bO
(0 c .

4-1 •H 4-1

CO CO > d
nJ Oi tfl OJ

3 J5 i
0) O* •iH

6 0) cn In
•iH JH J3 0)
H O D.

0) •i-i X
<0 u 01
01 •iH |H

C > O X!
o u MH CJ

a 01 to
en en tn a)
<U i

05 MH R ^
o ■rl O tt) 4-1 I4H

00 i-H

efl to (U tn
U > tn ^o
<U u C 0 > a» O -r-l

< 4J a
c to ja

•iH 0) CJ

U 3
x; CO
o MH

nJ O HH

a> O

d 00 U
•rl CO <u
Xt fi J3
4J a> g
•iH > 3
S to d

<u
•U

o
15

-85-

•a
a
o
u
<v
U)

C
•M

cr
>-!
<3i
Ü

•H >
<U

CO

CM a c ^'-

0)

60

a
c
c

c
c
c
a
c
c
c
c
a

p:

a
4-
C
a
C

-86-

response and service request, which was derived on the basis of the

assumptions of Version I, Jolds for Version II. Both models exhibit

the same general behavior as the input rates increase, or as one sub-

system changes its processing capacity relative to the other.

3.5 A SIMULATION OF SCHEDULING IN TSS/360

3.5.1 The Mod si

TSS/360 is a time-sharing operating system for the IBM 360 Model 67.

(IBM, 1968). This computer differs from the standard 360 line because of

hardvrare additions designed to create a virtual memory addressing struc-

ture utilizing segments and pages . Section 5.3 contains an elementary

discussion of paging. The interested reader is directed to Wilkes (1968)

and Denning (1970) for excellent treatments of the subject.

The algorithm which schedules and dispatches tasks in this multi-

programmed, time-shared environment is a section of TSS called the table

driven scheduler. Since each TSS system has a different user community

to :, . Lsfy, and a different hardware configuration, the parameters in

the table driven scheduler may be set by each installation. Many parameters

within the table are branching codes to other sections of the table. The

scheduling section of this simulation is much more detailed than other

subsystems such as the paging disks. This model is also implemented in

SIMULA. Appendix C contains a listing of the program.3

McCredie and Schlesinger (1970) describe the structure of the model

in more detail than is required here. One goal of the design was to show

that a useful model can be easily implemented without detailed modeling

of all system components. Different system modules have vastly different

This program was designed jointly by J. McCredie and S. Schlesinger. S.
Schlesinger implemented and debugged the version oresented in Appendix C.'

-87.

levels of detail in the simulation, and the areas of detail may change

as the model evolves. Elements of the pnysical system were included only

when necessary because of interactions with the scheduler. The primary

goal of the study was to obtain measures of response times experienced

by interactive users. Figure 3.5 illustrates the model's structure.

Three hardwa^ facilities appear: the CPU, the paging devices,

and memory. The CPU appears implicitly in all software elements of the

system and in the execution of user programs. No CPU charact.ristirs

such as clock cycle time or instruction times are included, although

they are implicit in the amount of computation time used by user programs.

Two types of paging devices are included in the model: disks and

drums. Disks are viewed as an infinite source of new pages demanded by

executing programs and as an infinite storage facility for pages written

out by the monitor. Actual operation of these units is complex since

arm seeks on different spindles can be overlapped, and software disk

managment routines try to optimize arm movements to maximize the flow

of pages into core. Instead of modeling this process directly, the

access time of a page is drawn from a distribution. The statistical

characteristics of this distribution reflect the operation of the actual

system. The parameters of the distribution were detemined by observa-

tions from system logging information. Drums are represented by their

revolution times and their capacity in pages. The distribution of access

times for pages from a drum is uniform from zero to the revolution time.

There are two major software routines in the model - the timer inter-

rupt handler and the table driven scheduler. Minor software functions

occur implicitly in other parts of the model. A timer interrupt occurs

l^Mt^ii linn i nnliMaiikili t - -■fri ni-irtiatiiiihTrrm! !-■ ■

-88-

4J
i-l b
3 o
«0 CO
h ■

01
<0 u
00 o
0) u

PL4 A4

r (X
c
4-
<d
0
cn

•o

0)
N
3

u
CO

O

O

o

rn

H

c
o
c
o
u
cd
u
c
3

Mk ^..M^, ■..jjintiiK'J.Jilicii-^a^.-i'l:*«* ■- -^—-- i'iti4ukv> ^-iTi^-H..,:. ..

-89-

when a user program has CPU control at the end ot its time quantum. The

interrupt handler may, depending on the program's scheduling parameters,

do any of the following: force a time-slice end and write pages onto die

disk (or drum); change the scheduling paramete. .>; give the program an

additional time quantum. The timer routine in the model performs the func-

tions of several subroutines of TSs/360 which are called when a timer

interrupt occurs.

The table driven scheduler is the most detailed portion of the simula-

tion. Each program in -.he system is assigned an entry in the schedule

table. This entry contains maximum limits on CPU usage and paging activity

of a program. A program exceeding the limits is penalized by loss of

eligibility for CPU allocation and possible lowering of priority. This

penalty occurs by changing the program's schedule table entry to a new

one depending upon how the progran exceeded the bounds of its previous

entry. For each maximum there is a new schedule table entry to which

the program will be assigned if that limit is exceeded. The monitor inter-

rupts a program during its time slice to check if any bounds have been

violated.

The rcheduler maintains several lists of programs, each one having

a different eligibility for CPU allocation. User programs move among the

lists depending on their schedule table entry and operating characteristics.

The schedule table in the actual system has limits on additional operating

characteristics of programs to enable fine-tuning of the scheduling algorithm.

Program behavior is characterized by periods of CPU usage separated

by pa^e faults. When tho program receiver CPU control from the scheduler

it is interrupted only by a timer interrupt or page fault. While it has

«.wllÄÄWÖ-'-.v'.. -'^ iEvtel^l**^.^ .1. ^K OLWO^^.AÜMWiä^äw^l.W^d.»...,,..., ._ ■■ . .J..^,..^^,,V..:,....ku »Tltitlilftlltl'ifif fll II .

.90-

CPU control, no classification is made of language used, system functions

called, or other modes of activity. The only parameter of interest during

CPU usage is the time necessary to complete the user request. Paging

activity is based upon the working set concept of Denning (1968). Each

request specifies the working set size for that request. The user pro-

gram then calls for sufficient pages to fill the working set. There is

no distinction concerning the contents of each page. Only the number in

core is of interest.

The users in the model make terminal requests and wait for system

response at the terminal. A request consists of the amount of CPU time

required and the number of new pages which have to be brought into core

for a complete working set. The model draws both of these parameters

from distributions either approximating observed system behavior or test-

ing hypothetical modes of system use. The distribution of response time

experienced by a user is the statistic of primary interest.

3.5,2 The Results

A modular simulation such as the one described In the preceding sec-

tion gives a systems analyst a great deal of flexibility. The original

goal of the model was to aid in tuning TSS/360 to the job load of the

CMU environment. The first use of the simulation involved a group of

users who proposed paying a higher rate to receive better service from

the system. The plan designed to achieve this service differential was

to create an algorithm in the schedule table so that users from the

higher priority class would follow a different path through the schedule

tablo. Tests using the model indicated that benefits of thi> proposed

solution were marginal compared to the Increased charge. A different

plan, based upon the concept of guaranteed terminal access to a certain

■■'"■'-■■'^■'^*i^t:a...-...-T.

-91-

150 y
12(U-

90 -
Response
Time '
(seconds)

60..

30

0 *"~ 4 h + 1 1 v
12 3 4 5 6

Service Request (seconds)

Figure 3.6

Model of TSS/360 - Heavy Usage Script

Response
I'ime
(seconds)

50

40--

30-

20--

lo--

/

/
./

/

Service Request (seconds)

Figure 3.7

Model of TSS/360 - Probe Job in Normal Mix

,...,.vv.r..Ji.>«^i||-fl|L||f:ittli -Mil ■ ^-jA.^f.uk^-;...—. ■ .■■. .—.^-u.^.A.iWt.^i^j.,,'^,..

-92-

number of higher priority users, provided the required service differen-

tial.

Ihe model may be used like the previous ones in this chapter to

measure both the mean value of response times for various loadings and

the mean response time conditioned on service request. Figures 3.6 and

3.7 are typical graphs of such experimental results. The first is a

heavily loaded system, and the second is more representative of a typical

user load. Results from this model of TSS/360 have the same global char-

acteristics as the results from the analytic models of Chapter 2.

Mean response conditioned on service request is a linear function of the

service request, and severe response degradation occurs with heavy loading.

3.6 DISCUSSION

The examples of this chapter illustrate some of the advantages and

disadvantages oi siu.ri.ition as a tool for the analysis of computer systems

Flexibility is demonstrated by the ease with which these models may be

modified incrementally to examine the effects of changes such as new dis-

tribution assemptions or the addition of another processing subsystem for

input and output activity. Appendix B contains the listing for TSM0D2.

To use this program to study TSMODl, one removes the activity describing

the i/o system, and changes a faw lines of code in the activity describing

the central processor. Appendix E contains a listing of the program used

to study different dynamic control algorithms for time-shared systems. The

program used to study TSM0D2 is also the basis for this latter model. The

dynamic control algorithm, and the user behavior model, were easily added

to the original design. The model of TSS/360 which is listed in Appendix C

l^^.^:...,,.;,..,.,^..^..^ |^ ; . ■ ; . ..;■, ..^s..^.-..^. ■ I Uttim^"""^ "''"ilWl lltlMl^i- illWttli ! '

-93-

also illustrates the flexibility of a modular approach to simulation.

Once implemented and debugged, a well designed simulation can be a very

powerful aid to system analysis.

Large simulations are expensive to implement and to run. The data

in the previous sections illustrate the variability which is inherent in

queueing processes. To properly analyze the results of experiments on

models of such systems, one must make many experimental runs. Since each

experiment is only one realization of a stochastic process, it can become

expensive to produce tightly bounded estimates of the values of state

variables.

The primary goal of this chapter was to examine the robustness of

the analytic models developed in Chapter 2. When the simulations are

closely related to the analytic models, the analytic results are within

the confidence intervals determined by the experiments. In addition, the

global behavior of more complex systems such as TSM0D2-Version 2 and

TSS/360 has the characteristics predicted by the analytic models. The

next chapter presents the results of three empirical investigations of

operational time-shared computing systems.

•

tttttotfaiaä^L^t-^^vw^. .:v-.^-^^^fc"«^"^^-^ir.i.-^.i^^^^■■^■-^^Hl.ttolMiw-.- ■■ limM,ü^'^-^''^^iu^.fat.r^-^.^^^^^^i^.^.-:. ..

-94-

CHAPTER 4

EMPIRICAL STUDIES OF SYSTEM BEHAVIOR

4.1 INTRODUCTION

Although the models of Chapter 2 include important features often

neglected in other models, they are simple structures when compared with

actual computer systans. The simulation studies of the previous chapter

illustrate a number of properties of feedback queueing structures, and

demonstrate that more complex models exhibit the same basic behavior pat-

terns as the simpler analytic structures. The purpose of this chapter

is to present empirical evidence that one may describe macroscopic per-

formance measures of actual systems with these same analytic formulations.

The models capture enough of the essential features of actual designs

to enable one to use them, as outlined in Section 1.1 and illustrated

in Chapter 5, in systems analysis studies.

There are many different ways to measure and evaluate the performance

of computing systems. Perhaps the oldest, and most coüiraon, technique is

the execution of a representative set of programs (called a benchmark

series) while monitoring the system. The development of a benchmark

series which accurately models the characteristics of a particular user

coraraunUy is a difficult problem that is not adequately solved. An ad-

ditional problem is that a computing system can usually be tuned to do

well on any specific benchmark series. However, the purpose of the ex-

periments which follow is not to compare and evaluate different systems

for a particular environment, but rather to explore their general behavior

and compare it with that predicted by the models of Chapter 2.

llra.»m-im,.^..-.JJ.m-i.„ -^-'-''tiilglrlliliill ■ t,^^,.-,......., .j,,,,, tMiiMmunif----..»^..-.-:..^ = ■■ ■■ -«- «Mllia'.mliimni'T .. iiiniMilirlUlilf "^J" " ■■.-.--^■JI:J..-.:.-.:

■95-

A representative ivenchmark series is particularly hard to create

for a time-shared system that is to support many independent users. A

method which is related to the standard benchmark technique is a user

population simulator which creates pseudo user tasks which follow a

script with precise inter-command timing delays. This procedure is an

important evaluation technique because of its high degree of repeatability.

Two coamon ways of implementing it are to dedicate a second computer to

the task of simulating the user population or to create, within the system

being measured, a special program that interfaces with the oparating sys-

tem and is capable of inserting user jobs into the task queue. Special

programming systems are required for this technique.

An alternative design, which was used for the first experiment,

makes use of people who follow a benchmark script. The purpose of this

design is to create a semi-controlled environment in which users can

run pre-designed programs and experience realistic system response. The

experiment was non-repeatable at the instruction level since users were

not synchronized or driven by any timing infonnation, but this typa of

precision was not required for the global performance measures of interest

in this chapter. An advantage of this semi-controlled design is that

actual user behavior doas not have to be modeled. Real users type at dif-

ferent speeds with different accuracy. To use a user population simulator

one must design a script, and an explicit model of the behavior of all

users. Thus in the semi-controlled environment one trades a gain in

realism for a loss in repeatability. Another reason for using the semi-

controlled environment was that the response time investigations, reported

in the next sections, were but one dimension of a larger investigation of

lü'iiiHlliiAlMiilairilliiri' im i i ' .

-96-

properties of different time-sharing systems. In the larger study,

qualitative judgments of users along dimensions such as ease of use,

perceived power, and reliability were important.

A disadvantage of both of the experimental techniques discussed so

far is that to observe the system in a realistic mode of operation one

must create a script which is a good approximation to user behavior.

An alternative procedure is to measure the system during an actual user

session. One may treat the computer and its user community as one large

system to be measured by inserting a probe task with known characteristics

into the job queue and monitoring its behavior. An advantage of this

technique is that if the probe job does not use a great many resources,

measurements can be made during actual user sessions without causing

severe degradation to other users.

The following experiments include the monitoring of both an operational

IBM 360/67 using TSS/360 and a Univac 1108 using EXEC-8. In the first

experiment, a set of users followed a script which directed their inter-

actions with TSS/360 while the system calculated and saved response statis-

tics. For the second, a small probe job was inserted into the actual

user environment. This probe entered the 360/67 at random intervals over

a period of a number of weeks, measured selected state variables, and

gathered statistics about its own response. The last experiment was

similar to the first, but it was performed on the 1108 using EXEC-8. Thus

the same basic experiment was conducted on two very different systems, and

two different types of experiments were performed on one of the systems.

The following sections contain a more detailed discussion of each of the

experiments and their results.

■

^ .it...,,.,!—^ .>.. ,..,...■■.^...j.:,:!^...: •al.kL,....i..„;„.„,i!.,.aj.^M,.^,J..: ,. , ...,. ,„rt .af.m,.a;aa.^.^-.. -.. .; „„^LvJmiMkW^r.i*:™....... .

-97-

4.2 EXPERIMENTS ON TSS/360

4.2.1 Controlled User Script

The computer used was the Carnegie-Mellon IBM 360/67 using TSS/360

Version 5.1. The experiment was run during the spring of 1970 when

Carnegie was using a memory hierarchy which included IBM large capacity

storage (LCS) which had a relatively slow cycle time of eight microseconds.

For this experiment 29 selected TSS users received a short training

session in which they were introduced to both the goals of the study and

the script. The computer was dedicated to the experiment for approximately

two hours. Users not participating in tha study were denied access to

the Systran. Participants had special account numberr valid only for the

study. All background batch computing was terminated so that only the

script tasks submitted from terminals would be active.

Figure 4.1 is a block diagram of the script, and Appendix D contains

a complete listing of the script. After establishing a connection with

the computer each user performed initialization tasks which gave him ac-

cess to required programs and which created necessary statistical files.

The initialization program called the FORTRAN compiler and directed it

to process TESTl. There were two small intentional errors in this source

code and each person then used the editor to correct these statements and

list the program. After the program was recompiled each user called it

a number of times submitting as control input the number of times the

program should execute its major loop. The code multiplied two thirty

by thirty matrices, and stored the result in a third matrix. Each user

task measured and printed its response time, and stored the information

-mm
miillinllniir imn M i iiiililililüli

-98-

LOGON to system

I
V

Perform Initialization
I tasks such as copying
idata sets and setting
lup output files

Compile, edit and
recompile TESTl

Figure 4.1

Block Diagram of User Script

 ,..■,. and ,._-

■99-

on a file for later statistical analysis. The second program, TEST 2,

was a small job which adds the integer one to a counter a specified number

of times and then stops. The third program, TEST3, was similar to TESTl

in computing requirements, but it demanded a large amount cf storage

(approximately 23,000 words). All of the programs computed the elapsed

time required by the system to process each request. The users saved all

terminal listings for later data verification purposes.

Figure 4.2 is a graph of the sample averages of respons» times for

the three tests. The horizontal axis measures the computing request in

terms of the number of iterations, I, through the major loop of TESTl.

Each of the other programs was scaled to this measure of central processor

demand. Each point on the graph represents the sample average of requests

having the same value of I.

4.2.2 TSS/360 Probe Experiment

The goal of this experiment is to investigate mean response as a

function of system load and service request in a typical user environment.

Over a period of a number of weeks a version of TESTl, which is listed

in Figure 4.3, was submitted to TSS/360 as a conversational task. A sup-

porting package was written to simplify the execution of each run of the

probe. One command initiated a complete cycle of five replications of

TESTl, each with a different parameter to control the processing request.

As in the previous experiment, control information was in terms of the

number of required iterations of the major loop of the program. Data

points were saved in a master file for later processing. Each data block

included the time of the experiment, the number of active conversational

• >
u

« in
u

In

<o o c c
P a 'H o
w VI u
> (U (U
< a: oi

OOOülOÜ
000Ü20U
0000300
00001*00
0000500
0000525
0000550
0000600
0000700
0000800
0000900
0000910
0000920
0000930
oooogi»o
0000950
0000960
0000970
0000980
0000990
0001000
0001010
0001020
0001030
000101(0
0001050
0001100
0001200
0001300
OOOIIJOO
0001700
0001701
0001702
0001703
0001701»
0001800
0001900
00019508
0002000
0002050
0002051
Ü002052
0002100

-101-

Figure 4. 3

Listing of TEST!

DIMENSION IB(8),IE(8)
DIMENSION Ml(30, 30)^2 (30, 30)^3(30, 30)
100 PRINT 899

899 FORMAK/' TEST1: PLEASE ENTER N IN FORMAT 12')
READ 900^
900 F0RMAT(I2)
IF (N.EQ.O) GO TO 10
PRINT 901^
901 FORMATC TEST1: ITERATI ON-M 3)
CALL CLOCK(IB)
DO 6 L-^N
DO 2 1-1,30
DO 1 J-1,30
M1(I,J)»2
M2(I,J)»3
1 CONTINUE
2 CONTINUE
DO 5 1-1,30
DO k J-1,30
M-0
DO 3 K»l,30
3 M»M+M2(I,K)*M1(K,J)
M3(I,J)=M
i» CONTINUE
5 CONTINUE
6 CONTINUE
CALL CLOCK(IE)
TRAN-36000*(IE(1)-IB(1))+3600*(IE(2)-IB(2))+600*(IE(3)-IB(3))
TRAN-TRAN + 6Ü*(IE(IO-IB{1»)) + 10*(IE(5)-IB(5)) + (IE(6)-IB(6))
TRAN-TRAN+.1*(IE(7)-IB(7))+.01*(IE(8)-IB(8))
PRINT 903,IB
903 FORMATC START TIME« ', 211, ':', 211,
PRINT 901»,IE
9OU FORMATC END Tl ME- ', 211, ': •, 211, ' : ', 211, '.', 211)
PRINT 905,TRAN
905 FORMATC RESPONSE TIME- '^8.2)
WRITE(1,800) N,IB, IE,TRAN

1,18,811,811,F8.2)

',211,'.',211)

00 FORMAT(2H
GO TO 100
10 PRINT 906
906 FORMATC'
STOP
END

TEST1 NOW COMPLETE. YOU ARE IN COMMAND MODE")

TEST1: PLEASE ENTER N IN FORMAT 12
01

TEST1: ITERATION 1
START TIME« 20:17:05.80
END TIME* 20:17:13.36
RESPONSE TIME« 3.00

TEST1: PLEASE ENTER N IN FORMAT 12
01

TEST1: ITERATION= 1
START TIME« 20:lit:2'j.35
END TIME« 20:15:15.09
RESPONSE TIME= 3k.7k

-102-

users, control information and the response time experienced by the pro-

gram. The system operator initiated a run of the probe approximately

once every hour while TSS was running user jobs.

The probe ran in a different environment each time it was initiated.

The program remained the same, but the system load varied from light to

heavy. Detailed status information about each user was not gathered. The

data were classified according to the number of active users and the pro-

cessing request. Figure 4.4 is a graph of the sample average of response

time conditioned on service request for a number of different system loads.

Each line represents a different user population density. Data points

were aggregated into four classes according to the number of active users

on the system (5-10, 10-15, 15-20, 20-25). Figure 4.5 treats the same

data in a different way. Instead of displaying equal load lines, this

graph presents equal service request curves plotted against the number of

active users. Since the users were grouped into classes, the data points

are in the middle of the appropriate intervals. Again the service request

is measured in terms of I, the number of times the probe had to execute

its major loop.

4.3 EXPERIMENT ON BXEC-8

EXEC-8 is a general purpose time sharing operating system which runs

on the Univac 1108 computer. Many of its design goals are the same as

TSS/360. One major difference in philosophy is that there is no virtual

memory. Instead of dividing programs into pages, as in TSS/360, EXEC-8

moves entire programs back and forth from core memory to external storage.

This experiment was the same as that described in Section 4.2.1. The

overall design was identical to Figure 4.1. The computer had 196K words

-103.

VO CM oo s* O
CO CO cs CM CM

vO

I I
w

o

c
0

%

-104-

ro
in
U

u
0)

JO

u
at

CO

I n

/-S r
^ w

— ■I- •o
OS 1
■>-» o u u i

w

"* c
<u >

^ I
H

(U

a
in

0)
3

i-i

<U
4J
U
a»
a J

-T05.

of high speed core storage, and a fully balanced set of drums and disks.

The computing system was dedicated to the experiment for approximately two

hours. The test was part of an overall evaluation of EXEC-8 performed

by the CMU University Computing Council, in the spring of 1970, and

Univac donated the time at their Chicago Information Systems Division ser-

vice bureau. Forth-three users participated in the experiment. Each

followed the same script, and each saved the terminal listings for later

analysis. Figure 4.6 is the graph of the sample averages of response

conditioned on service request. Once again the global behavior corres-

ponds to the predictions of the analytic models.

4.4 DISCUSSION

TSS/360 and EXEC-8 are large operating systems which control complex

time-sharing systems. The philosophy of memory organization is complete-

ly different in the two designs. The results presented in this chapter

should not be used as a basis for comparing the two different systems.

There was no attempt made to calculate the costs of the machines, and thus

one cannot make cost/performance comparisons. The particular programs

used in the script and for the probe could be unintentionally biased to-

wards one machine. The goal of this chapter was not to compare two dif-

ferent systems, but to observe their macroscopic performance.

The models of Chapter 2 capture enougl of th, basic design philosophy

of these two systems to predict the observations that for equal values

of load, measured in terms of the number of active users, response is a

linear function of service request and that for equal service requests,

response is a non-linear function of system load. One important variable

not explicitly considered in any of the previous models is the size of

O O U> to
eovoc -o
« o c c
h n. -H o
v ui o
> O (U
< DA to

-107.

user tasks. Figures 4.2 and 4.6 show that for equal service request,

measured in instructions from the central processor, response depends

on the size of the program. TESTl required approximately 3,000 words

for its code and data, and TEST2 needed only a few hundred words.

TEST3, however, was relatively large and required approximately 23,000

words of core storage. New models which consider the memory require-

ments of user programs should be developed to investigate this observed

relationship between response and size.

Analytic models, simulations, and empirical investigations should

interact. Section 1.1 outlined a number of ways these tools should aid

each other in systems analysis. The results of this chapter clearly in-

dicate that future analytic models should consider memory requirements

as an explicit parameter. The results also show that models like those

of Chapter 2 do have the ability to predict macroscopic behavior of actual

systems. The next chapter illustrates a number of ways these analytic

results may be used.

-108-

CHAFTER 5

APPLICATION OF THE MODELS

5.1 INTRODÖCTION

Chapter 2 contains a number of new results from models of time-shared

computing systems. Each model focussed upon a different feature of real

systems because the current state of queueing theory makes the simultaneous

treatment of all such features very difficult. The goal of this chapter is

to illustrate how models of this level of complexity may be used in three

areas: (1) design (2) performance improvement studies and (3) dynamic system

control. The user of such models need not have the mathematical background

to develop new solutions, but he must understand the underlying concepts and

assumptions. The developer of new models should present them in such a way

as to make these features readily understandable to the vser. The presentation

of Chapter 2 was an attempt to make the assumptions and the methodology obvious.

The experiments of Chapters 3 and 4 are included to demonstrate that systems

of greater complexity than the models, including real time-shared computers,

behave in ways which the models predict. This chapter presents some realistic

examples of how these models may be used.

5.2 SOFTWARE LOCKOUT IN A MULTI-PROCESSOR

The following problem illustrates the use :• modifications of the develop-

ments of Section 2.4 and Section 2.5 in a real design problem. The Department

of Computer Science at Carnegie-Melion University is implementing both a multi-

processor system called Cramp (Bell et al., 1971) and an operating system for

it called HYDRA (Wulf et al, 1971). The major goal of this project is to

 ! I ■■•-■-■'"■■-■■-

mmmmmmvimi*

-109-

create a powerful and flexible computing system which will support parallel

and pipeline processing and which is capable of orderly growth through the

addition of processors and memory. A major problem in the architecture of

such a system is the scheduling and coordination of the many individual pro-

cessors. The approach taken in HYDRA is to have a common shared data base

which contains all of the information necessary for a processor to make a

scheduling decision. While one processor is examining or updating this shared

information all others must be prohibited from accessing or changing it. The

act of protecting data from all but one processor is called locking and the

code accessing this data is called a critical section.

Figure 5.1 is a diagram of the model used to study the locking of critical

sections in C.mmp. Each of N homogeneous processors is a source of scheduling

requests, and each request must gain access to all of the data starting with

the first critical section and proceeding to all sections in order. If the

first critical section is free, the processor issuing the request locks the.

section and uses (possibly modifying) the data. When the request is satis-

fied, the processor unlocks the first critical section and tries to gain ac-

cess to the second. If a critical section is locked, the processor must wait

for access until it has been unlocked by some other processor. Thus, a qieue

of waiting processors may form in front of each critical section. A pro-

cessor will be designated as "blocked" for a scheduling operation if it is

either waiting for, or inside, one of the S critical sections.

A basic design problem is to determine how many critical sections, S,

to build into the shared data base. At one extreme S could equal the number

of logically distinct information segments in the data base, and at the other

extreme it could be equal to unity by having a single critical section include

the entire data base. There is an overhead loss of L timM units associated

with each locking and unlocking operation which would be minimized by setting

■■

-110-

o

u

00
c

•■-I

u
o
^J

c
o
4J
o I

X" or
o c

i co J: •< •■-' » i1

<J
O '
m
a

o t-i u e
•H 01 3 01 -H

01 » S <U 3

o M-I e u tu a)
O) O 'rl 01 V4 a.

c M
J3 O 8J
c o
3 Ö

-111-

S equal to one, but this solution does not allow for concurrent use of the

scheduling information. Overall system efficiency may be increased signif-

icantly by allowing many processors to have simultaneous access to the

scheduling information even though the additional locking operations introduce

more overhead.

The total time, T, that a processor must have access to the shared infor-

mation in order to make a scheduling decision is a random variable due to the

dynamic nature of the data base and to the many different kinds of decisions.

Let the time spent in each of the S critical sections be an exponentially

distributed random variable with mean L + T/S. This approximation includes

an assumption that the designer would try to balance the system so that pro-

cessors would spend the same mean time in each critical section.

5.2.1 A Poisson Source Tandem Queueing Model - MODI

A simple but useful model to explore this problem is the Poisson source,

tandem queueing structure discussed in Section 2.4. Since there is no cycling

of requests within the critical sections, the appropriate modification of

this model is to set I, the probability that a request will leave the system

after passing through the S servers, to unity. All arguments presented in

Section 1A to justify analysis based on independent M/M/1 queueing systems

apply to this model also.

Let the source of scheduling requests be Poisson with rate X"N requests

per unit time where N is the number of processors making requests, and \ is the

rate from an individual processor. A major assumption in this formulation

which is not realistic is that a processor will continue to issue scheduling

requests before the previous ones have been satisfied. Congestion will be

-112.

more severe In this model than in a more realistic formulation which assumes

that a processor may not generate additional scheduling requests when it is

in the blocked state. The next section considers such a finite source model.

The mean number of requests, EiHj , either waiting for, or inside of. each

of the S critical sections is simply the expected number of tasks in an M/h/l

queueing system with input rate X-N, and service rate 1/(L + T/S) .

(5.1) ECM^ « X-N/(1/(L + T/S) - \.fi)

The total number of requests waiting for, or inside of, all critical sections

is S-E^). Little s theorem, presented in equation (2.12). relates the mean

response time through all critical sections. E(R). to the mean number of blocked

requests.

(5.2) E(R)=S.E(M1)/(X.N) = S/{1/(L + T/S) - X-N)

Figure 5.2 is a graph of mean response through all critical sections for different

values of S and N for fixed X. L. and T for the Poisson source model.

5.2.2 Finite Source Models - M0D2

A more realistic approximation to actual processor behavior than tht

previous model is the assumption that each of the N processors computes for

an exponentially distributed random interval and then makes a scheduling

request. The processor will be unable to proceed with normal computing until

it has gained access to all S critical sections and is no longer in the blocked

state. As in the previous model, the time spent in each critical section will

be an exponentially distributed random variable with mean L + T/S.

If the number of critical sections equals one, the model reduces to one

form of the machine repair problem discussed in Section 2.3(with the overhead

.113.

II
CO

f

II
CO

CO
m M
o O m
u U)
a <U
XI o B o
3 u
C a.

11

Z

0)

3
00

•H

Q
O m

tn
a
o
*J

CO
M

<u
a
o

d

3
T)
a) J
u
w
M
O

iw

!U

•S
H

(U
cfl
C o
a
CO
0)

os

a
cfl
<U
K

t-i—t-d—1—t—t—I V I

M

|
0
u
(U
CO

O
u
Ü

o
o o

00
o o o

-113

■ -■ ■■ ^^,*^Ma*i*!*ii*L^i,Mi .,,:.., --,, ,.

-114-

loss fraction, f, equal to zero). Madnlck (1968) used this model to calculate

the mean number of blocked processors, when S-1, as a function of P, the

number of processors In the system. Jackson (1963) derives results for

general networks of Polsson queues which have statf* dependent Inputs. This

general solution may be applied to this model in a straightforward manner to

determine the mean number of blocked processors for an arbitrary number of

critical sections, S. His method leads to the following equation for the mean

number of blocked processors in the finite source model illustrated in Figure

5.1.

(5.3) E(M)

E | i.N! . (Vl + A . /X Y)
1=1 L(N-l) ! \ S-1 / \ u ' J
N ? N» . /S-1 + i\ . ^X NO
r l (N-D! (^ s-1 ; ur;)

Where u = 1/(L + T/S)

The second argument used to derive (2.69) applies to this model and thus

equation (2.70) may be used to relate mean response time through the critical

sections to mean number of blocked processors.

(2.70) E(R) ^
X'(N - E(M))

Figure 5.3 Illustrates the relationship between the mean response time and

the number of processors, N, and the number of critical sections S, for fixed

X, L, and T for the finite source model.

hiiüimiiii,i|-ni''"'^'^'°^-j-^-'"—-- -■-.-—^-J.^^x..^tjitt....1-. - '-. . . , ._ i-iiMi^-^--31'-"1

»v

.115-

CO
i O

O (U
o <u en
o W -1
o i
IT) o
■»s^ u-i o
r—t —i (-1

II II II

r< -) H

to
•a i
o

/^ o

u o
)->
u

o
o e

üiiiÄ

-116-

A lower bound for mean response time of scheduling requests may be

obtained using an idealized state dependent service rate model based on

the development of Section 2.5. In this model, the system is capable

of dynamically reconfiguring the structure of the shared data base in the

following way. Let m be the number of processors requiring access to the

scheduling information at time t. The ideal system would provide m critical

sections at time t. Whenever a processor completes its scheduling activity,

or whenever a processor arrives with a new request, the accessing program

will instantaneously change the structure of the data base to provide

exactly the same number of critical sections as processors which need ac-

cess to this data. In addition, all m processors will always have access

to some data so that they will never be idle while attempting to use the

shared scheduling information. Although this scheme is obviously imprac-

tical, it does lead to a lower bound for response time, and one may see

how close to this bo'.md a practic i implementation may get.

Since every processor may use scheduling information at once, the

exponential service rate for ea^h processor is l/(T+ra.L), where m is the

constantly changing number of processors demanding access to the common

data. A processor will not have to wait for any other processor, but it

will pay a dynamic overhead penalty with rate m-L time units where m changes

with the system state. Let P (t) be the probability that there are m pro-

cessors in critical sections at time t. As in Section 2.5 one may write

the following system of state equations.

(5.4) P0(t+6) = (1-N.X.6) • P0(t) + (l-(N-l).U) • 6.P1(t)/(T+L) + o(6
2)

-117-

p (t) = (N-(ra-l))-X.6 il-(n.-l)-6/(T+(m-l).L)] • Pm.l
(t)

in

+ (l-(N-m)-X-6) • {l-m.fi/CT+ra.L)} • P (t)

.2,
+ i(m+l).6/(T+(m+l)-L)} • [l-(N-(m+l)-X-6} - P^U) + o(6),

m=l,2,...,N-1

PN(t) = X»8«tl-(S-l)'6/(T+(N-l)-L)}»PN.1(t)

m
(5.5) P = Fft -n X-(N-(i-l)) • (T+i»L)/i, ni-1,2 N

1=1
N

0 . . m
i=l

One may calculate the mean number of processors in the blocked state by

solving the above set of equations and then using equation (2.63). Equa-

tion (2.70) relates the mean response time for a scheduling request to the

mean number of blocked processors. On Figure 5.3, the line labeled

"S = ideal" is the plot of mean response time for this idealized version

of the critical section scheduling problem.

5.2.3 Discussion of Results

Both Figure 5.2 and Figure 5.3 illustrate the sa.uc types of performance

changes with respect to changes in the number of processors and the number

of critical sections. Mean response time increases with the number of

processors. For a constant number of critical sections, S, the increase

2
+ [l-N-6/(T+N-L)} PN(t) + 0(6)

Following exactly the same procedure as in Section 2.5, one first collects

terms and then takes the limit as 6 - 0 to get P^t). In statistical

equilibrium lim P'(t) = 0, and lim P (t) = ?„. The result of this manipula-
t-»oo m t-»"

tion is the following set of steady state equations.

fajri.!^«^.^.-^...... ^.f w^v^....... :,;-.^ .„■...■ ■ i [iiiinlMlinili^nri'Ut li lii^i.iitti'^ilMi'i tt^iin

-118-

in mean response .ime is approximately linear, with respect to N, until

the system becomes congested. As N increases beyond this point, the slope

of mean response time as a function of N grows larger with increasing N.

This non-linear response time degradation as a function of the number of

processors is more severe in the first model (because processors continue

to submit requests while blocked) than in the second, but it is evident in

both.

The addition of one more critical section significantly improves mean

response, for higher values of N, in both models. The additional locking

overhead, L, associated with each critical section degrades performance

slightly for small values of N. At these low values of N, the arrival rate

of requests is so low that the extra locking overhead is not compensated

for by the potential parallel utilization of the S critical sections.

An interesting characteristic of thesa models is the large performance

improvement achieved by the creation of one or two additional critical

sections. Figure 5.3 demonstrates that when S=2, the response time im-

provement is about one half of what the idealized system could provide.

The improvement is greater for higher arrival rates of scheduling requests.

The slight response time degradation for low arrival rates indicates that

an efficient design would be the implementation of a few (5=2, or 3)

critical sections. This choice would create an effective safety valve.

Whenever the load would increase, parallel access to the data would occur

and the shared scheduling information would not become a bottleneck. The

overhead penalty at low arrival rates is in the neighborhood of only five

percent and the improvement at higher request rates is approximately fifty

percent.

., .■,.:^-^-- ■■..■..■*Mjte,.-...

J'

-119-

All conclusions dra^n from a model like this depend on the values

of the input parameters. The variables isolated for this model are:

X, the mean arrival rate of scheduling requests from each processor; N,

the number of processors; S, the number of critical sections; T, the mean

time required to perform a scheduling operation; and L, the mean time

needed to lock and unlock a critical section. The system designers can

determine the values of T and L from code requirements and the speed of

the processors, and they know the range over which N may vary. However,

one needs an estimate of X to determine the best value of S. Unfortunately,

this parameter is very hard to estimate before the system has been built.

This basic dilemma is at the heart of many crucial design decisions.

One needs the value of an important parameter to make a good implementation

decision, but that value can only be estimated with a reasonable degree

of confidence after the system has been in operation for some time. A

good analytic model can be an important tool in such decisions. The nature

of system response over a wide range of possible values may be easily

studied. These sensitivity studies may lead directly to a solution, or

they may help to plan a strategy for future experimentation and performance

evaluations.

For example, the model of scheduling activity in C.mmp indicates that

when the number of processors is less than four or five, and scheduling

requests arrive with a mean interarrival time of five milliseconds (X=]/5000)

from each processor, a single critical section is all that is needed. As

one adds more processors, or alternatively, if the rate of scheduling re-

quests is much greater than this estimate, then one or two additional

critical sections will improve performance significantly. Since both the

.^» •

-120.

overhead penalties at low request rates, and the implementation costs, are

small for these additional critical sections, the designers at Carnegie-

Mollon chose a multiple locking strategy for Cramp.

5.3 PERFORMANCE IMPROVEMENT ANALYSIS

Consider a time sharing system similar to the IBM 360/fa7. This sys-

tem, using the operating system TSS/360, was the basis for the simulation

presented in Section 3.5 and it was used for the empirical investigations

reported in Section 4.2. Many of the powerful features of this system

lead to high overhead costs. The virtual memory design gives every user

a working space for programs and data that is much larger than the amount

of high speed core memory in the systQwi. The operating system manages

tills virtual memory so that users do not have to worry about storage al-

location problems. When a user wants some information that is not cur-

rently stored in the high speed memory the system will automatically

retrieve it from secondary storage. All information in the system is

divided into blocks called pages. A page fault occurs when a program

needs access to a page that is not currently in high speed memory.

Each page fault causes both an overhead operation,due to the many

bookeeping functions that must be performed, and a request to the input/

output (i/o) subsystem to retrieve the new page. Quite often a page

already in memory must be placed in external storage to make room for

the new page. The page fault rate is related to the amount of high speed

core allocated to each active user. As each user's core allocation be-

comes smaller he will generate more page faults. Computers with a virtual

memory often have been observed to enter a mode of operation, commonly

-121-

called thrashing,in which each user is allocated so little core memory

that he generates a page fault very soon after gaining control of the

central processor. Then the combined page request rate from all users

may exceed the capacity of the i/o subsystem. When thrashing begins

efficiency drops very quickly due to the combined effects of page fault

overhead and the i/o system bottleneck.1 A common cause of thrashing is

allowing too many active programs to be squeezed into core memory with

the result that none has enough of this resource.

A manager of this type of time-shared system can improve system

perfomance in a number of ways. This section will Illustrate how

the models of Chapter 2 may aid in a study of alternative performance

improvement plans. For example, changes in technology, or in operating

budgets, may make it feasible either to increase the processing capacity

of the central processor (C.measured in instructions executed per unit

time) or to increase the total amount of core memory available. One may

want to combine both methods. The performance measure used here will be

the mean response time experienced by the users. The hypothetical system

will have characteristics that are useful for illustrative purposes, and

will not be representative of any particular implementation.

Increasing C, the instruction rate of the computer, will benefit

users because their tasks will take less processing time. A common way

of increasing C is to improve the perfomance of the memory in the system.

For example, the 360/67 at Carnegie-Mellon was configured with a large

amount of core memory, called LCS (Large Capacity Store), having a relatively

slow cycle time. Improvements in memory technology made it possible to

1
See Denning (1968) or (1970) for good discussion of thrashing.

-122.

increase the speed of similar memories by a factor of approximately

three. if the number of active users is kept below the number that causes

thrashing, what improvement may be expected in mean response time if C

is increased by a factor of two or three and all other parameters remain

constant? An increase in C would be of little help if the system were

operating under conditions where thrashing could occur frequently.

Increasing the amount of core memory available will help users be-

cause they will be able to compute for longer intervals, when they have

control of the central processor, before causing a page fault. Overhead

will decrease because there will be fewer page faults to process, and the

paging demand placed on the i/o system will also decrease. How much will

a two or three fold decrease in the number of page faults experienced by

a task benefit mean response time if all other parameters remain the same?

What effect would one observe from a combination of these two possible

performance improvements?

The hypothetical system which will form the basis for the analysis

will be a computer with the following basic characteristics;2

(a) the original ^peed of i:he central processor vill Le

250,000 instructions per second;

(b) tasks arrive at the system with a mean rate of 2 per econd;

(c) each task originally will issue an average of 40 page

faults per request;

(d) each request will be for an exponentially distributed

number of instructions having a mean value of vl « 5 0,000;

current0^';!! C5aracteristics a" illustrative representations of some
1*1^*1 a

tL^e-shared computers which make use of extended core storage
devices and a virtual memory design. *Eor«ge

.123.

(e) the overhead time to process a page fault will be a

random variable with a mean of 5 milliseconds; (Since

a page fault will occur with a mean rate of once every

50,000/40 = 1,250 instructions, or about once every 5

milliseconds, the system is spending approximately 50

percent of its time in paging overhead operations.)

(f) the time required to locate and transfer a page of in-

formation from external storage will be approximately

10 milliseconds.

In the following analysis three different types of possible per-

formance improvements will be considered:

Case (a) Mean overhead time required to process a page fault will

remain constant at dl = .005 seconds per page fault re-

gardless of the value of C, the effective speed of the

central processor. C will increase from 250,000 to

550,000 instructions per second.

Case (b) The mean number of instructions required to process a page

fault will remain constant at dl-I = 1250 instructions.

Thus the mean time needed to process each page fault will

be (dl-l/c). C will increase from 250,000 to 550,000 in-

structions per second.

Case (c) C will remain constant at 250,000 instructions per second,

but the mean number of page faults generated by each task

. will decrease from 40 per interaction to 18.2 per interaction

(£ increases from .025 to .055).

-124-

The distribution of the number of instructions a task

requests will remain the same, but tasks will compute for

longer periods of time before generating a page fault.

Increasing the effective speed of the central processor may, or may not,

have an effect on time required to perform overhead operations associated

with a page fault. Case (a) represents system designs in which an in-

crease in the instruction rate of core memory dedicated to users does not

affect the speed of overhead activities associated with the resour -A al-

location functions of the operating system. For example, the system could

have a memory hierarchy in which the operating system used the fastest,

and most expensive, memory in the system and user programs ran in slower

core memory (LCS). Performance improvements in LCS would not affect the

speed of overhead functions which make use of the high speed memory.

Case (b) represents the situation in which the performance of all memory

in the system is improved. Case (c) illustrates the effects of an addition

of ro- re memory to the system with a resulting decrease in paging activity.

5.3.1 TSMODl Analysis

Figure 2.1 illustrates the structure of TSMODl. Paging overhead is

treated explicitly in this model. Overhead will be a random variable

having a mean of dl and standard deviation of dl/5. Equation 2.24 pre-

sents the functional relationship between mean response time and the other

system parameters. Let the expected value of V (the number of instruc-

tions required to complete a task's request) be vl, and the expected value

of W (the number of instructions executed between page faults) be wl. If

V has an exponential distribution, W will also have an exponential distribution

 lillllllllltlltilrtll In . ^^"-: ■-'"'-'- , ■ Ki.il.liai.'ntr '-I

-125.

with mean i'vl and second moment w2 = 2.(wl)2. The values of all para-

meters needed for the initial configuration of the model are:

C = 250,000 instructions/second

X = 2 tasks/second

I = 1/40

vl = 50,000

wl = l-vl

w2 = 2.U.vl)2

JI m /.005, case (a)
~11250/c, case (b)

d2 = (dl/5)2 + (dl)2

Note that the i/o system does not appear in this model. An implicit

assumption associated with this structure is that the i/o system is not a

bottleneck and will not significantly affect performance. Any delays

associated with page transfers will degrade performance from that predicted

by TSMODl.

Figure 5.4 presents graphs of the performance increases which result

from the three different strategies (a), (b), and (c). The first example

of Section 2.3.3 indicated that when overhead is not present and when all

other parameters were held constant, changes in i did not cause changes

in the mean response time. As more quantizing took place (i decreased)

the standard deviation of response increased, but the mean remained the

same. Figure 2.2 illustrated the effects of a type (c) improvement in

an overhead free environment. However, the overhead included in the model

of this section has a large effect upon mean response as Z changes.

Cutting the paging rate in half is equivalent to doubling the speed of

core dedicated to users. A careful examination of equation (2.34) indicates

that an increase in C produces a response time improvement similar to a

mammffMiiiiBiiiiK

-126-

<u <1>
in in
<0 to
u u

u ,a
V ■^w^

Cu
•o

m c ^
C « o

u-l o s*^
m •H ^^^

4J CD tt)
O ^ CO
3 i B m o
4J i
m CO IJ
C CO O

•i-l U M-l

<r o ■ m
m o o

St

o

m
01
u
00

m
en

O
o s
CO
H
U

n o
•i-t
4J
u
c
3

CO
CO

01
01
d
o
a
CO
0)

OS

01

H

Of o
««/ y
w rj

CO

m O
H

o
en

m
CM

■

'■' :' ',-'- • ■ • i rnrr Mnii mmm

-127.

decrease In the number of instructions required to satisfy a task's

request. A decrease in the paging rate (an increase in Ä) produces an

improvement similar to a reduction in overhead delay associated with the

processing of page faults. Cases (a) and (c) produce almost exactly the

same improvements. Case (b) reduces the load on the central processor

by decreasing the times required to process both a task's request and

the overhead associated with each page fault.

5.3.2 TSM0D2 Analysis

Figure 2.6 illustrates the structure of TSM0D2. An i/o subsystem

in tandem with the central processor illows one to consider the effects

of page transmission delays on mean response time. To keep the analytic

formulation tractable, one must assume that the service times spent in

both the central processor and the i/o system are exponentially distributed.

The analysis of Section 2.4 did not include any provision for overhead

degradation due to the processing of page faults.

One may introduce overhead into TSM0D2 in the following way. Let

the service time spent in the central processor be an exponentially dis-

tributed random variable having a mean of (vl/c + .005/A) seconds for

case (a) and a mean of (vl/c + 1250/(C-«) seconds for case (b). As in

the previous section the total number of instructions required to satisfy

a task's request will have a mean value of vl. The mean time spent in

the central processor during each quantum interval will be an exponentially

distributed random variable with mean ((vW)/c + .005) seconds for case

(a) and mean ((vl-A + 1250)/c) seconds for case (b). This formulation

retains the essential features of a random quantum interval which is

divided into an overhead segment and a processing segment.

.128-

Equation (2.55) presents the mean response time in TSM0D2 conditioned

on the fact that a job requires v instructions. Since this is a linear

function of v.one may remove the condition by replacing v with its ex-

pected value presented in the preceding paragraph. Let the time re-

quired to find, and then transfer, a page from external storage be an

exponentially distributed random variable with mean wl2 = .01 seconds.

All parameters required for this model have now been specified.

Figure 5.5 is a graph of the performance increases achieved by using

the three improvement plans. in this model an increase in C, the pro-

cessing rate of the central computer, has no effect on the i/o subsystem.

Case (b) is again better than case (a) because an increase in C reduces

the overhead delay. But the best of the three strategies is case (c).

A reduction in the paging rate achieved by the addition of more core

reduces both overhead and the demand on the i/o system. For case (c)

the systan maintains a better overall balance, and neither subsystem be-

comes overly congested.

5.3.3 TSM0D3 Analysis

TSM0D3 is a finite source, processor-shared, model with an overhead

loss which is a function of the state of the system. Figure 2.8 illustrates

the structure of this configuration. Like TSMODl, this model does not

have an i/o subsystem and thus an implicit assumption in its use is that

the i/o delay is not significant. Any delay in the i/o system will add

to response times computed by this formulation.

The model does not explicitly consider any overhead associated with

the processing of page faults. The state dependent overhead loss represents

-129-

U Xi
<U
a

TJ
in c ---
c CO U
0 v-^

•rl ^-N

u A tU
o ^ U]

3 a)
u-(M 10 O
I/-) 4J V

cn in u
a at o

■t-i U '4-1

1 ci
o o

o
in

u

o

U

3
oo

o

-in
eg

« C ^^ o
w o i

to

m

o

i iilfcuii 1

.130.

general overhead degradation, but it is not a function of the paging rate.

To apply the model to the situation of interest in this section one may

take the same approach as in Section 5.3.2. The instantaneous exponential

rate for each job in the processor-shared system was called vC«(l-f'm)

in Section 2.5. The number of tasks in the processor at each instant of

time is m. Let vC be equal to J&'C/(vl«£ + .005'C) for case (a) and

£'C/(vW + 1250) for case (b). Since the mean of an expenential process

with rate vC is l/(vC) this formulation leads to the same expected pro-

cessing times as the previous derivation. This model also retains the

essential characteristic of a random quantum interval which is divided into

an overhead and a processing segment. The state dependent loss factor

(l-f»m) will be applied as it was in Section 2.5.

Let N, the number of terminals making requests upon the system, be

40 and let the time between the completion of one request and the sub-

mission of the next be an exponentially distributed random variable with

a mean of 20 seconds (X = 1/20). Let the overhead loss fraction, f, be

.02. All parameters required for TSM0D3 have now been specified and one

may oxamine cases (a), (b), and (c). Figure 5.6 is a graph of the per-

formance increases achieved by using these three plans. An examination

of the equations of Section 2.5 indicates that for cases (a) and (c) an

increase in the processing rate, C, is equivalent to a reduction in the

paging rate. Thus the curves for cases (a) and (c) coincide. Case (b)

achieves a better level of performance because an increase in C has a

direct effect on the overhead delay associated with each page fault.

'■•■■ ■•<
,, ...-,•, ■-■■

.131

01 (U
vi in
ro nj

a
O /->
o .a
(U w
09

"O
u c
<u n)
CL *—^.
co td ^^
ti ^ o
o w

•i-i in
u 0) <u
O CO co
3 cB fl

U1 M o o m 4J
CO U 1-
a o o

o
CO

•H m m

ü

o g>

o
en

m m
CO

•a

OS o
W O
W 0)

-132-

5.3.4 Discussion of Results

Each of the three models used to study the hypothetical performance

improvement problem concentrates on a few important features of time-

shared computing systems. In the previous sections each model was modified

so that it could be applied to a problem for which it was not specifically

designed. For example, TSMODl and TSM0D3 do not include subsystems

which can represent input/output activities. TSM0D3 is the only formula-

tion which considers the effects of both a finite user population and an

overhead degradation which is a function of system state. TSM0D2 and TSM0D3

both require that service requests be exponentially distributed random

variables, and neither of these two models includes an explicit mechanism

for studying the effects of paging overhead.

By carefully redefining some important parameters one may apply all

of these models to the per^onnance improvement problem. Each model allows

the analyst to focus on a different aspect of systeui design. The results

clearly show that performance may be significantly improved by either in-

creasing the processing rate or decreasing the paging rate. All three

graphs also indicate that the performance improvement curves level out

after an initial interval of a higher rate of change.

All of the models point to additional studies which should be made.

For example, none includes a functional relationship between the size of

core and the paging rate. All of the models predict significant performance

improvements if one can lower the paging rate, but the amount of additional

core which woulo be required to cut the paging rate in half (by doubling

Ä) is beyond the scope of these analytic models. A simulation such as

the one presented in Section 3.5 can help with this problem. In addition.

■■ : ■- -' ', ;.

-133.

a carefully designed experiment on the current configuration could help

quantify this relationship.

The following list illustrates some (of the many) additional consider-

ations which would be required prior to an actual performance improvement

decision: the relative costs of more versus faster memory; comparative

reliabilitites of different memories; maintenance problems; vendor

compatability; purchasing and leasing agreements; interface problems with

other system components; predictions of future usage patterns and tech-

nological improvements; changeover costs; other subsystem improvements.

The use of analytic models as a performance analysis tool can help reduce

uncertainty in some of these dimensions and thereby improve the decision

making process.

5.4 DYNAMIC SYSTEM CONTROL

All of the models applied to the performance improvement problem of

the previous section show that response time will increase with the paging

rate. As the number of users competing for core in a virtual memory sys-

tem grows the paging rate increases. At the end of a quantum interval,

systems which do not have a virtual memory structure must often save, in

external storage, that portion of a user's program and data which Is cur-

rently in core memory. The saving of one core image in external storage

and the retrieval of a different one is usually called swapping. Swapping

need not occur at the end of every quantum because core may be large enough

to hold several tasks at one time. As the load increases, and more users

demand service, the swapping rate, like the paging rate in a virtual

memory design, will increase. The overhead associated with paging and

swapping will cause response time degradation.

ii im tmAi i I . , , u. . . -. - - —- . »UM ■

-134-

Flgures 2.3, 2.6, 2.7, and 2.9 show that as the arrival rate of

requests grows, expected response time increftses in a nonlinear manner.

This degradation, as a function of the arrival rate, occurs even when

there is no overhead associated with swapping or the processing of page

faults. With overhead present the effects are magnified. The phenomenon

of thrashing, which was described in the previous section, is an extreme

example of what can happen when overloadii^- occurs.

Quick response to short requests is a major goal of time-shared

computing systems. To mainLain a reasonable level of response all such

systems must limit the input rate of requests. For example, at Carnegie-

Mellon a Logon Priority system Limits the number of interactive terminal

users to a pre-set limit. If someone tries to join the system and the

number of people currently logged on is equal to the limit, the new user

is denied access until the system can fovce one of the active users to

leave. The algorithm which makes the decision,about which job should be

forced, considers factors such as pre-assigned priorities and the length

of time each of the current users has been connected to the system. The

algorithm chooses a user to be forced from the system and then notifies

him that he must leave within the next tvo minutes or be automatically

terminated. If the algorithm is unable to find a user who meets all

criteria tor automatLC tenrination, the new user is denied access. Once

a user has been allowed to logon to the system he is guaranteed a minimum

length of time during which he may use the computer.

McCredie (1967), Wulf (1969), Wilkes (1971), Mills (1971), and others

have suggested that dynamic load adjustment procedures be used to control

the performance of computing systems. CTSS, a time-shared system developed

 .

.135.

at MIT, has such an automatic load leveling capability built into the

operating system. Wilkes (1971) presents an analysis of the stability

of such a system and Mills (1971) describes the algorithm in use at MIT.

The objective of this section is to illustrate how analytic models such

as those developed in Chapter 2 may be used as an integral part of such

a control System. Clearly a model for this purpose should not require

a great deal of ccxnputer time to solve, or any gains resulting from the

use of the model could be lost in the extra overhead required to support

the control algorithm.

5.4.1 The System

Figure 5.7 illustrates the structure of the combined computer and

user subsystems. Of all potential users, only a fraction will want to

interact with the computer at any particular time. The system will deter-

mine how many active users, N, will be able to establish a connection

(logon) and then use the computer. The procedure which performs this

control function will be called the Terminal Allocation Algorithm (TAA).

Appendix E contains a listing of the SIMULA program used to investigate

a few (of the many possible) different versions of a Terminal Allocation

Algorithm.

The global structure of the program is illustrated in Figure 5.7.

The data gathering facilities and the central processor and input/output

subsystems are slightly modified versions of the simulation used to study

TSM0D2 in Section 3.4. The changes from the previous model are the addi-

tions of multiple input queues (based on the priority of a job) for each

subsystem, and the modification of the overhead portion of each quantum

h^a^...^,w^. ...'..■-...., ^ ,..

-136-

a
■d -u
0) 01

JS >>
CO CO

•r4
C co

■H 0) V
IH > ^ CO
h 0)
0) r-l
CO
Ö "O

C
CD (

0)

3
00

I
c
o

cd
u
o

o
(U
V.
3
4J
u
3
M

-137-

to include a constant part and a portion which is proportional to the

number of tasks waiting for service. Users at terminals are represented

by a SIMULA activity, called USER, which creates requests and inputs them

to the computing subsystem. After each request has been completed the

user gathers statistics about his response time and then either creates

a new request or leaves the system when all requests have been satisfied.

Each user is inactive while waiting for the computer to finish a request.

Another SIMULA activity, called the GENERATOR, creates users who try to

gain access to the system. The Terminal Allocation Algorithm decides

whether or not a new user may logon to the system.

5.4.2 TAA1

The first Terminal Allocation Algorithm evaluated is the default,

or null, algorithm. Every job requesting service is admitted to the

system regardless of the current load. After an intitialization period

during which 2 0 users submit a total of 100 requests, new users logon

to the system at a rate slightly greater than users leave the system.

All users have the same statistical properties and the same priority.

The line labeled TAA1 on Figure 5.8 shows an increase in average

response times as a function of time. As the number of users in the system

increases, average response time increases in a nonlinear fashion.

5.4.3 TAA2

Using knowledge gained from the behavior of models like those of

Chapters 2 and 3, one may formulate a simple but effective Terminal Al-

location Algorithm based upon a limit to the number of people using the

system. The only value needed by the algorithm is the number of users

■ ■■■■■■

.138.

o
o

, o

oo

o

CM

O

I
o
u
0)
(0

(U I
T3
0)
4J
(0
i-l

I
CO

o
CM

O
-O

00

0)

3
bO
•H

o
o
CM

o
o
CO

-t-

00 ■&

-f-
CM

H

1
I
u
o

0)

I
H
4-1
O

c
o

§

(0
nj

0)
CO
c
o
a
to
0) a

«

>

o + o

0) c
01 co O
00 C CJ
«sou
h a. co
a) tn
> 01 c
< a: -H

.139-

currently logged onto the system. If the number is greater than the

control limit any new user is denied access to the system. Whenever a

current user finishes work and leaves the system a new user is allowed

to logon if one is still waiting.

The line labeled TAA2 on Figure 5.8 shows that the simple strategy

of controlling the input rate to the system will keep response times

within design limits. Any idle time generated by limiting the maximum

number of users may be allocated to lower priority tasks which may be

interrupted with the arrival of more higher priority work.

5.4.4 TAA3

The third Terminal Allocation Algorithm is based upon the type of

load balancing mechanism in use on the CTSS system at MIT. The control

algorithm of TÄA3 samples the state of the system periodically, and

dynamically adjusts the maximum number of users who are allowed to logon

to the system. Between sampling intervals the algorithm acts exactly like

TAA2. If a user tries to logon, and the number of users already active is

greater than or equal to the control limit, the new user is denied access

to the system.

The philosophy underlying dynamic adjustment of the maximum number

of users is based upon the observation that users have widely varying modes

of interactive computer usage patterns. The parameters describing usage

and input rates vary with time. If these parameters were stationary with

respect to time one could choose a value for the maximum number of active

users, Nmax, and never change it. If all Nmax users are performing editing

types of functions the central processor may be underloaded, and the system

■ iiiiilriiliiMlilliiiiii ii ...-■^»«UI.U.MI».,» , ^mwiiirtiimirt.'rit «».

.140-

could support more users. Alternatively, if all Nmax users are compiling

and running large programs the system could become overloaded. A control

system that monitors the actual state of the system and balances the load

accordingly can increase the number of users when there is excess capacity,

and can reduce the input rate of requests when overloading occurs.

At each sampling instant TAA3 estimates values of the input rate of

requests from the active users, the sizes of the queues in front of the

central processor and the i/o system, and the rate at which tasks request

service from the i/o subsystem. Using these values, TAA3 estimates both

the number of tasks currently being processed by the computer and their

characteristics. Using TSM0D2, the tandem queueing model developed in

Section 2.4, the control algorithm then computes what effects the addition

of another active user would have on the state of the system. If the pre-

dicted value of the system state is within the control range, the maximum

number of users allowed to logon is increased by unity. If the addition

of one more active terminal causes the predicted system state to exceed

the control limit, the maximum number of active users is not changed. If

the measurements indicate that system state has already exceeded the con-

trol values, the maximum number of active users is decreased by unity.

However, in this implementation, no users are forced to leave the system

before their session is complete.

It is a well known fact from the field of control theory that control

algorithms, such as the one outlined above, are subject to severe instabili-

ties. Since both the input and service ^unctions are stochastic processes

all of the parameter estimates are random variables subject to statistical

fluctuations. Wilkes (1971) examines the stability of a simplified version

hm -:■■■-' -—- ■ ■ ■ ■ ■ -■-■;-—-■■■^inmiiMilHili V i

-141

of the previously described dynamic control algorithm and demonstrates

that instabilities are possible in practical situations. In addition

to the variance of the parameter estimates, tie time delays between

changes in the control variables and their resulting effocts make the

proper choice of a control strategy a difficult problem. The theoretical

treatment of this control problem, as applied to computer systems, is an

area of future work which is not treated in the present development.

The particular version of TAA3 used in the following simulation is

listed in Appendix E as activity ESTIMATOR. A common method of estimating

non-stationary random variables is to form an estimate at each review

period which is based on a combination of the past information and the

current observations. TAA3 uses the following exponentially smoothed

estimator for all state variables:

(5.6) ^ = (I-*) . ^ + a . sk>k+1

Xk is the value of the estimator at the end of the k period, and S.

is the sample observations which occur during period k+1. In the simula-

tion, of - l/3 and the time period between each sample was 25 seconds.

These values were found by trial and error to smooth the statistical fluc-

tuations of the process, and to track changes in the parameters of the users.

For this simulation each new user draws the parameters, which describe

his usage mode, from probability distribution functions. Two parameters

characterize user behavior:

(1) the mean value of the service request

(2) the mean time a user spends in the "think" state between

the completion of one task and the submittal of the next.

-142-

Each user's parameters remain constant over the duration of his

terminal session, but each request and each thinking interval are random

variables drawn from a distribution characterized by the constant parameters.

Thus the total user load will change as the parameters change.

5.4.5 Discussion of Results

Table 5.1 presents the results of a simulation of this environment

using TAA2 with the maximum number of users set at 30. Table 5.2 presents

the results of a simulation of the same environment using TAA3, the dynamic

control algorithm. S is the estimated average number of tasks being pro-

cessed by both the centra1 processor and the i/o system. TAA3 tried to con-

trol this value at 3.5. The average number of interactions processed during

each reporting period of 400 simulated seconds is approximately the same al-

though TAA3 is slightly higher (381 versus 392). The average number of

tasks in the system and their average response times are significantly larger

for TAA2 than for TAA3 (4.56 versus 3.54 and 4.83 versus 3.84). P is the

average percentage of idle time spent by the central processor. TAA2 had

significantly less idle time (.12 versus .19) than TAA3. This time is not

wasted since it can be used for background tasks of lower priority.

By controlling the average number of tasks demanding service, TAA3 is

able to significantly improve system performance. TAA3 uses TSM0D2, the

tandem queueing model, to evaluate the effects of proposed changes in the

control variables. The magnitude of the potential performance improvements

indicate that future investigations should examine the problem of designing

an allocation algorithm which is optimal with respect to stability and per-

formance objectives. The goals of this section were to illustrate how such

an algorithm can use analytic models, such as those developed in Chapter 2,

and to investigate what orders of magnitude of performance improvement one

may expect from the implementation of static and dynamic control policies.

i^,,. ;
--.-..,..,L-.^...-^- hi^^.^Mt.^hiit^^^^.«..^... . .

• -

-143-

l(U[

ao CO m <r> CM CM m r>- a>
CM rH i-i o o O o o o

00 CM (M CO
CM

CM
■-I

o CM
i-l

en
o

oo
o

•«I
CM CM o -* 00 >+ >t r».
CO CM oo en o vO in >* •^-i-HCMONCItOvOOi-l^-iriCO

\or->oooOvor^r-tao<4-u-icMio

cMcocoiovor-»ooioincocnco^{n^^-^-coi»»^-

CM O f^
•-• o 0

CO 00
00 *t

r>>. io
m to

, vO t^ CM iwl ^ o r^ so o 00 CM i-l o
ao oo vO «M i-l «y. rH

O O o 00 I-l r^ CO
f-l CM CO f> Psl o\ r-

vO
vO

CM CO vO c^ oo m COCO^^COCM^-COCO

vo o
m <*

m in
in to

sJ- CM i-t

m 4J
«

a» i-i
^ 2 xi 6 a -H

o ä I-l CO I-l f! vO r^ ON o to oo r^ i-i VO VO m vf) CM VO ■-I 1 ■n o vO CO oo OV Ov m «* <*• <N vo CM OV r» m CM CM i-l 00 vf «* CO <• CO co CO co CO CO -* CO CO CM CO CO <t CO <* CO o

CM CO m vo 00 ON O r-l CM m vo oo <?<

vO

r-ltM

CM

o
CM

CM
in ca

iidaa

-144.

■ Cti|

00 a\ <M CM
«M T-4

00 CO CM 0^ l*» f"< <*
<-> r-l ^ r-l o 04 CM

vO CM
CM i-l

00
CM •-< CM rH

IOSI

o
CO

ON o
o

00
o o

CM
st- ir» st

st o oo
St ^H CO

OX 0^

CM CO CM CO CO

OX rH

vO
o

ä
•4- VO ^ r-l CO oo >d- CO CO CO CM «M CO COj CO CM F-4 •

'col m co
• ■

CM CO

ON
o O ON f»

in r^ oo
• • •

St CO CO

CO
CO ^t
00 f-t

o r^ i-i ^H

m CM i-4 P^
vO i-i vO
m <-i r*.

o St
m

(M r-
00 Ov

o
CM

-^cocorHinmcoco CM ^- CO CM CO COI CO

VM
o
u
0)

I

CO < I
ttri
o
a

cv| O
• ^-1

in 4J i
0) r-(

•5 2
CO -H
H CO

o
(0

3
CO
<u

CM r^ vo ao CM oo
p* f< # IO tH di
st ^ ^- m co i-i

vO
on
CO

^ l-H r» CM m vO CO l-l vO o OS o>
CM CO St m CM CM

ao
CO
CO

m
CM
en

CM r-l CM
OV r-H in
St St St

m
vO
St

CM m
OV rH
CO 00

r-
r^

00 Ov
oo i-i

o
o
st

I CM CO in vo oo ov o i—i m vo ao a>

<-(|cvl

>X

o
CM

CM
cn in

-145.

5.5 CONCLUSIONS AND FUTURE WORK

Chapter 1 contained a discussion of the role of analytic models as

one of the techniques useful in the analysis of computing systems. The

interactions of the analytic approach with simulations and empirical

studies were explored, and the work of the following chapters was placed

in context with other studies.

Chapter 2 presented the derivation of a number of performance mea-

sures of models of time-shared computer systems. Simplifying approxi-

mations, developed for some of these results, were compared to the exact

expressions. Each model focussed upon a different feature of current

time-shared implementations. Each of the models is easy to understand

and use because the results are not complicated to compute, and because

the structure of the model is obvious to the user. Since relatively few

(five to nine) variables specify each system, the models are easy to

control in sensitivity studies.

Chapters 3 and 4 presented evidence that the models are robust in

the sense that the behavior they predict is observed in a wide range of

related systems (both simulated and actual). The previous sections of

Chapter 5 illustrated how such models may be used by designers and managers

of computer systems. The example of Section 5.2 is a case study of how

system implementors were guided in an important decision concerning the

design of part of the operating system of C.mmp, the Carnegie-Mellon multi-

mini -processor. Thus the models meet a numSer of the criteria, stated by

John Little in Chapter 1, required of models which are to be used by de-

signers and managers.

 ■ ~'".^l....™ -. , ^~,.:JiL*^ä»*iM)JL,-.n

.146.

One of the characteristics of much of the current literature dealing

with analytic models of computer systems is that it lags developments of

actual systems. Increased communication among those who design systems

and operations research specialists who create new models would help to

roduca this time delay. Many currently available models are directly

applicable to present design problems. For example, the area of the al-

location and scheduling of resources in networks of computer systems is

one in which models, such as those of Chapter 2, could be helpful.

Analytic models are greatly simplified abstractions of real computing

systems. Therefore it seems appropriate for future model builders to

concentrate more on simplifications which lead to useful approximations

of important system problems, then on exact, but very complicated, solu-

tions to minor modifications of existing structures. Naturally such ap-

proximations must be carefully studied to determine their domain of ap-

plicability.

Analytic modelling ir, only one of .any technique, available to those who

want to analyze, measure, improve, and create better computing systems.

One of the goals of this report is to help place this approach to system

modelling into perspective as an important tool, not a panacea, for com-

puter scientists.

iMäitkMM ■■-"■'-•■''-J

■'- -

-147-

APPENDIX A

DERIVATIONS

This appendix contains a number of derivations which were referred

to in the body of the report, but did not fit in any previous major line

of development. The first section presents helpful, but non-standard,

methods of calculating the first and second moments of non-negative ran-

dom variables. These results are used in Section A2 which contains the

correct expression for the second moment of the truncated exponential

quantum interval of the Coffman and Kleinrock (1968) model, and in A3

which contains a derivation of the distribution and moments of 0 . the

remaining service time distribution of a quantum in progress when a new

job arrives. Section A4 presents a solution to the Poisson source, ex-

ponential service with constant overhead associated with each quantum, mod-

el analyzed by Adiri and Avi-Itzhak (1969) and Rasch (1970). The

solution method is the one used in Chapter 2, and the results are identical

to those obtained by Adiri and Avi-Itzhak who used more complicated trans-

form methods.

Al. THE FIRST TWO MOMENTS OF A NON-NEGATIVE RANDOM VARIABLE

The well known technique of integration by parts forms the basis for

the following analysis. Integrals may often be simplified by application

of equation (A.l).

(A.l) rbudV = uV|b - rbVdu
a a

If X is a non-negative random variable having finite first and second

2
moments, E(X) and E(X), and a distribution function FY(t), then:

.148.

(A.2) E(X) = r(l-FY(t))dt
0 X

0 en

(A.3) E(X) = 2(: t(l-FY(t))dt
0 X

Proof

Apply (A.l) to (A.2) with the following substitutions:

u = 1-Fx(t) du = -dFx(t)

dV = dt V = t

(A.4) fe0(l-Fv(t))dt - f(l-Fv(t))r - rt(-dFY(t)) = ftAF(t)) = E(X)
J0 X X 0 0 X 0 X

Apply (A.l) to (A.3) with the following substitutions:
■

u = 1-Fx(t) du = -dFx(t)

dV = It dt V = t2

(A.5) 2-J0Dt.(l-Fv(t))dt = t2•(!-¥(t))\a> - fV-C-dF (t)) = E(X2)
0 A '0 0

The term f (1-Fv(t)) l" is zero because f(l-F (t)) ^ f^ydF (y)
x 10 A t

CD 2 I 00

and lim f ydFv(y) = 0 since E(X) exists. Similarly t .(1-F (t))
i X A I n

is zero because f2.(l-FY(t)) ^ fVdF (y) and lim J*y dF (y) = 0 since
Ä t t-»«0 t

2
E(X) exists.

-149-

A2. THE SECOND MOMENT OF A TRUNCATED EXPONENTIAL QUANTUM INTERVAL

The second moment of a quantum interval is an important quantity in

the Coffman and Kleinrock (1968) article. They assume that service quanta

have the following distribution function:

0
(A.6) FQ(t) =/l-e

-ut t < 0
0 <: t < q

t ^ q

The second moment of Q may be easily calculated using equation (A.3).

(A.7) E'Q) = 2 Jj:(l-F (t))dt

= 2 fte-Utdt + 2 f+t.ödt = 2 fte-Utdt
0 q 0

Apply (A.l) to (A.7) with the following substitutions:

u = t

dV = 2e"Utdt

du = dt

V = -2e -ut

E(Q
2)=z2t£^|q + 2 ^^ut^

0 u 0

^.ia-e-, •/■qe
u

-uq
—(2uq+2)

...^...*^.*^,-*i^M**. . _. H inMMMT-ilHfiMliitftrtrimiri

■150-

The final form of equation (A.7) corrects equation (16) of Coffman

1
and Kleinrock in which they assert the following incorrect result:

2 2 e"Uq 2 2
(A.8) E(Q) = -2 - ^-^-(u q + 2uq+2)

u u

INCORRECT

A3. REMAINING SERVICE TIME - Q

Given that a job from a Foisson source enters a system and finds a

job being served, what is the distribution of Qr, the time from the arrival

of the new job until the one being served finishes? Section 2.2.4 contains

a discussion of this quantity. Conway, Maxwell and Miller (1967), Chapter 8,

pages 146-147, present a derivation of the properties of Qr. Since this

quantity is very important to the results of Chapter 2, and since Shemer

(1967) did not realize that Q had a distribution different from other

quanta, this section will present a derivation of the distribution of Qr,

its Laplace transform, and its moments. The following derivation differs

substantially from Conway, Maxwell and Miller, but the results are the same.

Let Y be the elapsed time from the beginning of a service interval

until a new task arrives. A well known result of renewal theory is that

2
if a job finds another being served when it arrives, then:

(A.9) P(y ^ Y ^ y-Hiy) = t(l-Fx(y))/
E(x)]dy. V ^ 0

where F (y) is the distribution function of a service interval.

Coffman, E., and Kleinrock, L., "Feedback Queueing Models for Time-Shared
Systems," Journal of the Association for Computing Machinery, Vol. 15,
No. 4, Oct. 1968, p. 557, equation (16).

2See Morse (1958), p. 10, or Avi Itzhak and Naor (1963) for ulscussions

of equation (A.9).

 ,

.151-

service interval of length X

/
X

/'

time

new job
arrives in system

The probability that Q will be greater than some value t, given that

Y=y, is just the probability that X will be greater than y+t, given that

it is already equal to y.

(A. 10) P(Qr > t|y=y) = P(X > t+y|x > y)

1 - Fx(t4y)

1 " Fx^
; t,y ^ 0

By subtracting this result from unity one gets the conditional distribution

function for Q given Y.

F (t+y) - F (y)
(A.ll) F |Y(t)=P(Qr^t|Y=y)= \ _F (y)

X ; t.y^O

Ft+dt+y) - Fv(t+y)
(A.12) P(t ^ Qr ^ t+dt|Y=y) =

X 1 _ F (y)
X ; t,y a 0

Multiplying equation (A.12) by (A.9) leads to the following joint probability:

(A. 13) P(t £ Q £ t+dt and y <: Y ^ y+dy) =

(Fx(t+dt+y) - Fx(t+y)) dy

E(X) ; t,y ^ 0

-152-

By integrating equation (A.13) over all values of Y, one gets the

probability of the single event, (t ^ Q ^ t+dt). Using the definition

of F (•)» one sees that the numerator of (A.13), integrated over all values

of Y is just dt multiplied by the probability that X will be greater than t

(P(X > t) = 1 - Fx(t)).

(A. 14) P(t s Q <: t4dt) - J P(t £ Q S t+dt and y <: Y £ y4dy).dy
r y=0 r

(1 - Fx(t)).dt

E(X)
, t ^ 0

Equation (A.14) is the result presented earlier as equation (2.8).

The first moment of Q was called ql in Chapter 2. The value of ql is

easily obtained from (A.14) by using equation (A.3).

(A.15) E(Qr) = ql = rt.(l-Fx(t)).dt
0 E(X)

= E(X2)/(2.E(X))

The Laplace transform of Q is:

(A.16) L (s) = E(e"sQr)
r

oo e"st.(l - Fx(t))-dt

t=0 E(X)

1 - Lx(s>
s E(X)

Moments may be obtained from Laplace transforms of random variables by

differentiation.

k k d L0 (s) (A.17) E(Qp = (~l). %

ds s=0

MMIJ "«li-Min^iiiii iii'.i-.r.' ir'-;i^riM,iiiiiili-nilllnVtti ■

-153-

Using equation (A.17) one may show that the following result is valid for

the k moment of O .
r

fcf,
(A. 18) E(Qk) - E^X) . , 0 ^r' (k+l).E(X) ' k=1.2,...

Equation (A.18) was presented previously as equation (2.9).

I A4* SSJ°N
M^EL

0ISS0N S0URCE, mmmnkh SERVICE. AND CONSENT

An assertion of Chapter 2 is that the methodology based on simple

expected value arguments will handle more complex models than those

previously published. The attempt by Rasch (1970) to use this technique

in an exponential model with constant overhead was unsuccessful not

oecaase the method lacked power, but because Rasch failed to recognize

important state dependent relationships. He neglected the fact that T
i*

tne wait in queue preceding service quantum i, is dependent on T

I Adiri and Avi-Itzhak (1969) solve the Poisson source, exponential

, service model with a constant overhead delay associated with every quantum.

| Figure Al illustrates the structure of this model. The distribution func-

tion of the length of a quantum, Q, follows.

j0 t < d
(A. 19) FQ(t) JuS*«'*) T St ^d-fw

l1 t < d-4w

Every quantum is divided into two segments. The first interval, repre-

senting overhead delay, is a constant d. and the second is a random vari-

able representing useful processing time. The maximum length of the second

interval is a constant, w. The total processing request, V, exclusive of

UHf^.LJ.l.^:.. ■,- . l_^ , : „ , ■■ -■■ .-.It- -..._

-154-

overhead delay, Is exponentially distributed with mean l/v. If a request

is not satisfied in a quantum, the job leaves the processor and rejoins

the end of the queue. If a request is completed within the time limit w,

the task leaves the system and a new quantum may start.

P(Task completes service) = 1-e
-vw

Polsson I
source with \
rate X jobs V

/

constant overhead
delay d

0 0 0 0

service
interval of
maximum

-^^length w

P(Task rejoins queue) g e
■vw

1-e

FQ(t)

1-

•vw.

-»t
d d+w

Figure Al

Structure of the Adiri/Avi-Itzhak Model

Adiri and Avi-Itzhak employ generating functions and Laplace trans-

forms in non trivial ways in their derivation. The purpose of this section

is to show that careful application of simpler, more easily understood.

-155-

techniques will also yield exact solutions to problems of this complexity.

Transform techniques are more powerful than the methods of Chapter 2 since

higher mome-. .s may be computed by differentiation. Transforms may also

be numerically inverted to obtain the distribution function of a random

variable. The price paid for this greater power is increased complexity

which makes the results harder to understand and use.

The model of Figure Al is another example of an M/G/1 queueing system.

Like the early part of Section 2.3, the first part of the Adiri/Avi-Itzhak

work is the calculation of total service request, expected ».'unber of tasks

in the system, and the first two moments of the quantum interval. In the

following discussion (AA.n) will denote equation n of the Adiri/Avi-Itzhak

work. Minor symbol changes maintain notational compatability with Chapter 2,

-vw
Define: a = e

(AA.12) E(V) = l/v + d/d-a)

(AA.19) p = l-p0 =» X.E(V) < 1

2 2
(AA.21) E(M) = p + X E(V)/(2(l-p)), where M is the random number

of tasks in the queue and in
the server

The expected wait in queue until the task enters the server for its

first quantum interval, E(T,), given in equation (2.31), has the same

derivation in this model as in the system of Section 2.3.4. Equation (2.31)

is identical to (AA.49).

Adiri and Avi-Itzhak base their recursive equations on the random

variable, K., the number of queued tasks behind the tagged job as it enters

the server for the i quantum. E(K1) is the sum of three terms: (a) = the

expected number of arrivals from the exponential input source during T,;

.. ,. irttitiililrtä

-156-

(b) = the expected number of jobs that return to the queue that were in

the queue in front of the tagged job when it arrived; and (c) = the

expectation that the arriving job finds the server busy (Probability p)

and that the job in service returns to the queue.

(A.20) EOCj) = (a) + (b) + (c)

(a) = \'E(T1) = X-ql-(E(M)-p) + X-p.q2/(2.ql)

(b) = e"V,W.(E(M)-p) = (y.(E(M)-p)

(c) requires careful treatment analogous to the derivation of ql
r

the expected remaining service time of the job in service when an arrival

occurs. The probability that this task will return to the queue is not a

as it is for the other jobs. The fact that this job has received a random

amount of service when an arrival takes place alters the probability that

it will return for additional quanta. Shemer (1967) neglected this fact

as well as the fact that ql ^ ql.

Multiplying equation (A.11) by (A.9) gives one the probability of

the joint events that (A) an arriving task finding the system busy enters

y time units after the start of the service quantum in process and (B)

waits less than t time units until that quantum is finished.

{F (t+y) - Fn(y)}
(A.21) P(y <: Y £ y+dy and Q <: t) = -* 2

r a.

Evaluating this expression for t ■ d4w-y and integrating over the

allowable range of y values (0,d+w) gives the probability that a job in

progress when a new arrival occurs finishes before the maximum quantum

limit and therefore does not rejoin the queue. Call this event "U".

.157.

(A.22) P(D) = ^ J^lF^d-fv) - FQ(y)]dy

1 iJ+W.-i -VW „ , MJ

4 0

ql - (d+w)'e

qi

The probability that the job does rejoin the queue is thus:

(A.23) l-P(D) = -^^
q1

Multiplying this result by p, the probability that the server is busy when

a new job arrives, and substituting in equation (A.20) leads to the expected

number of tasks behind a job as it enters the server for the first time.

(A.24) EOCj) = (E(M)-p)-(f^-X-ql) + p-i.X-q2 + 2 - a'(d+») }/(2 ql)

To get this result in the exact form of Adiri and Avi-Itz'aak one need

only uxpand the quantity Xql and use eq. (AA.12) and eq. (AA.19).

(A.25) Xql = X-(d4(l-a)/v) = X-E(v)•(1-^) = p'(l-ff)

Substituting p-Cl-cc) for X'ql in equation (A.24) leads to (AA.39). The

authors note that their form of the result was derived from a generating

3
function "after a rather lengthy and not painless process."

The equations for E(K.) and E(T.) for 1=2,3,4,... are easily derived,

as in Chapter 2, once the initial values for i=l are specified (equations

(A.25) and ^2.31)).

3Adiri and Avi-Itzhak (1969), p. 644.

-158-

APPLNDIX B

LISTING OF TSMOD2

INTEGER LOOP;
FOR LOOP:»! STEP 1 I'.iTIL 2« 10
GIMULA iJEfii;;
INTEPiER |fII)IIX/:iEEn/K/C0lJIJT/STATE/STAPT"P/f'AXriiST0!^R1;
REAL SU.MS^GUMSS^SM.MC^SlKlC^SIJf.RS^oUMn^SUimR;
REAL r>TATTII!E,EXITPRü3,STATE!riTEG'<AL/-1ARK,TEMp#orT;
REAL :W\K?.,CP\ HLE^CPREST;
REAL I'lARKI^lOtnLE, lOlEST;
REAL ARRAY nATA(1: 21,1: ?), I JTK 1: ? '), T'T^ (T :-"');
I NTERER ARRAY TRAMS I TPI ÖT(1:71) / S ERVI CEP i r>T (1121), r.TATE PPOR (liV.)}
INTEGER ARRAY INT1(1J2^);
SET CPQDEUEJOUUEUE;
ELE'IEÜT PROCESSOR, I OSYS/'.AI M;
300LEAH INITIALIZE;

PROCEDURE RESET;
^EfilN

INITIALIZEt-FALSE;
COUNTt«0)
MARK: "MARKa : -STATT I M.E: =T I' T. ;
su(isi"SUiisst«3Uf'.ct«su{icct«."i)rlnst«';u^n:»3i!!'iRn!«f?.n;
3TATEiriTEGRALt«CPinLEs»lv1inLE{»0.^;
TOR K:=l STEP 1 III1TIL 21 nn

fiEGIM
TRANS I TP I GT(K) j -S^'V IGEDI ST(K): -?!TATE PROP, (K): =n ;
nATA(K,l)t«0ATA(i;/2)i«n.

fi;
END;

END OP PROCEDURH r,^S[:T;

 in niiiriiw -■"^■■■—"■„a,,, n,,,,...,,

-159-

ACTIVITY TA3K ;
BEGIN
REAL ARRI VALTIME,SERVICE!IME^CLEI;
300LEAN PASSI;

PASS 1:»TRUE;
ARRIVALTIME:=Tir.E;
HISTO(STATEPf;O!J/INT5/STATE/{Ti:iE-:!APJ'.)*100.'>);
ACCUIUSTATEMJTEGRAL.I'ARK^TATE,]);
IF I [)LE(PROCESSOR) THEN ACTIVATE PROCESSOR APTER CURRENT;
WAIT(CPQUEUE);
TEI1P:»TlllE-ARRIVALTirE;
SUMR:=SlJUR+TEiiP;
SUHRR:»SU;,.RR+TEf1P*TEI'iP;
SUIlS:=StJiiS+SERVI CETIME;
SUf^SS:=SUU,SS+SERVICETIiIE*SERVirETir.E;
3UrJC:=SUi'1C + CYCLEl;
SUnCC:»SUMCC+CYCLEl*CYCLEl;
5UHRS:«3Uf'.RS + TEUP*SERVICETIME;
HISTOCTRANSITniSTJNTl.TEnrM);
HISTO(SERVICEniST#IMT2/3ERVICETIf'E/l);
HISTO(STATEPROB,IUT3/STATE/(TIME-nARK)*10n.O);
INDEX:»SERVlCETinE*2n.n+1.0;
ACCU'U STATE I ilTEGRAL, MARK, STATE,-1);
INDEX:-IF IIIDEX LEO 21 THEN INDEX ELSE 21;
DATA(I NDF.X, 1): »OATACI NOEX, 1)+TEMP;
OATA(lfJDEX/2):=«nATA(ir"r)EX,2) + 1.0;
COlJtlT:=»COUIlT+l;
IF (INITIALIZE AND COUNT EQL STARTUP) THEN RESET;
IF COUNT EQL MAXCUSTOMERS THEN ACTIVATE MAIM;

ENO OF ACTIVITY TASK;

ACTIVITY GENERATOR;
BEGIN
GltHOLOniEGEXPd.r^SEEO));

ACTIVATE NEW TASK AFTER CURRENT;
GO TU 01;

ENO OF ACTIVITY GENERATOR;

utmum«*

-160.

ACTIVITY COMPUTER;
P.EillN
P.HAL OVEmiEA%rU!AMTA|

Cl:lZXTfiACT PIRSKCPQUEUE) '.'HEM TASK nn
15 EG I II

C2tOVERHEAt>;«NORnÄL(,'.)5,,ni5,,fEE");
IF PASS1 THEM

'iETIM
CYCLEl:=Tlf,E-ARr:r'ALTI'iF. + nvEnMEAn;
PAS31:»FALSE;
END;

QUANTA: »NOill 1AL(. 05,, n 15# r.EEH);
3E^VI CETI flE : «SEUVI CET |ME*1HAMTA;
H()LO(OVE!<HEAn*QUAMTA);
INCLUOEdASK^ lOQUEUE);
IF lOLE(IOGYS) THEM ACTIVATE ICSYS AFTEH rüH^EMT;
EMU

OTHEfU'lSE '«EGIIJ
ACCHfKCPlDLE^flAUKa^CPREIIT, 1.0);
PASSI VATE;
ACCUH(CI»inLE#!1ARK2,CPRE8T,-1.0);

EMI);
GO TO Cl;

END OF ACTIVITY COMPUTER;

ACTIVITY I0PR0CE5S0R;
ilEGIM
REAL I03ERVICE;
101: EXTRACT Fl PST(IOOIJEUE) '.MIEf! TASK nn

DEGIM
I 0 f» E U VI C E: »U N I F m f; (0 . 0, .!!, 3 F E 'l) ;

HOLn(IU3ERVlCE);
TEMPt'DMIFORIKn.n^.n^^frf-n).
IF TEMP LEQ EXITPRO!; THEM ACTIVATE TASK ArTFn ri'PnrMT

ELSE I] EG IM
IMCLMPEdASI^CPQHEIIE);
IF nLE(PnOCE330P) THEN

ACTIVATE PP^CESSO^ AFTER CHRRF.MT;
END;

ENH
OTHERWISE BEGIN

ACCUIKIOIDLE/IAUK^, IDPEST^.O);
PAS3IVATE;
ACCUlU lOIDLE/IARKS, IOOEnT,-l,n);
EfID;

GO TU 101;
EMI) OF ACTIVITY IUPRÜCESSOR;

-161.

END ÜF ACTIVITY in PROCESSOR;

READ (SEEn#STARTUP#nAXCUSTOt1ERS);
WRITEC SEEDr-'^EEP, • STARTUP: »',STARTUP, 'MAXCHSTOMERSt »SMAXCUSTOMERS);
EXITPRORt«.125;
INITIALIZE:»TRUE;
FOR K:=l STEP 1 UNTIL 20 PO

UEfilfl
INT1(K):=«1.5*K;
INT2(K):».1*K;
INT5(K):»K-1;
END;

PROCESSOR :» NEW COMPUTER;
IOSYS:-NEV; IOPROCESSOR;
MAIN:»CURRENT;
ACTIVATE NEW GENERATOR AFTER CURRENT;
PASSIVATE;
ACCUMCSTATEINTEGRAL/IARK^TATE^);
ACCUM(CPinLE/MARK2/CPRE5T/0.n);
ACCUfKIOinLE^IARKSJOREST^.O);
WRITEC TIME AT RUN COMPLETION IS1,TIME,' NUMBER OF TASKS PROCESSED IS',

COUNT);
WRITEC CURRENT STATE I S' ,STATE,'AVERAGE STATE IS1,

STATE INTEGRAL/(TIME-STATTIflE));
TEMP:»SUMS/COUNT;
OUT:=»SaRT(SUMSS/COUNT-TEMP*TEMP);
WRITEC SAMPLE AVERAGE AND SD OF SERVICE TIMES ARE', TEMP,OUT);
TEMP:=(COUNT*SUMRS-SUMR*SUMS)/(COUNT*SUMSS-SUMS*SUMS);
OUT:»(SUMR-TEMP*SUM5)/COUNT;
WRITEC REGRESSION ESTIMATE OF SLOPE AMP INTERCEPT ARE' ^TEMP^UT);
TEMP:»SUMC/COUNT;
OUT:=SQRT(SUMCC/COUMT-TEMP*TEMP);
WRITEC SAMPLE AVERAGE AND SD OF FIRST WAITING TIMES ARE', TEMP, OUT);
TEMP:»SUMR/COUNT;
OUT:»SaRT(SUMRR/COUNT-TEMP*TEMP);
WRITEC SAMPLE AVERAGE AND SD OF RESPONSE TIMES ARE',TEMP, OUT);

PROÜARILITY PROCESSOR IS IDLE IS',CPIDLE/(TlME-STATTIME));
PROBABILITY I OSYSTEM IS IHLE I S ', I 01 DLE/(TP'.E-STATTI ME)) ;
THE TABLE DISPLAYS RESPONSE AS A FUNCTION OF SERVICE');
INTERVAL','AVERAGE R','NUMBER OF POINTS');

WRITEC
WRITEC
WRI TE ('
WRITEC
FOR K:»

END
END

1 STEP 1 UNTIL 21 DO
BEGIN
TEMP:»IF PATA(K,2) GET 1.0
ÜUT:»K/2Ü;
WRITE(OUT,TEMP, PATA(K, 2)) ;
END;
OF SIMULA BLOCK;
OF PROGRAM;

THEN DATA(K,l)/nATA(K,2) ELSE O.P;

j-^""'•-"--•-"•"■'•■-■ ,

-162-
APPENDIX C

LISTING OF TSS/360 MODEL

:-C ,1
1 .Tf r,m >TAKTCLOC»S,SI .Tr'L»T^INK,W<:MF;Afj|
tXTfV-^L PKOCETU^f LTSTC,LpWI .T ,; A^E 'C^E-^ULLT Af^LM
..E.AL CVl "Hf ÄO»VMTKF A' ;
Rn^l.rA" AIT, ir)jrLT»f,t,AAlT, p(.I\'".|
r jTKr.E:- AXUSF.^S,

ffC^COTAB^NTKir^,
'tlXTASKSOf 5l«PL nT(Lt;SpAf,L«;.rHA-.'ik:ui)J

SCHUfTAftC^T^If'S » ^-iJ

IMtlGFR A^RAY Sr^rnTAiMllSCHEnTAHF.MT^ItSiltQ)!
r.Tr-.ft? JÜH3rTA5Kc., •-AGEiUSCi :#0'iA'TA , lOLtVLL i

PWPRITV, TT 'LSLIr;t,v^xCH,
MÄX^G^Oi '"T"1. TSi^Oi MPRE , PACtnELAYj

t 'KGr« SEEni,sri|,)2»srf:o3,T»AfitevEu.sEEö4,sttos»sEi:o6fSEi!:o7;
UIST '-ATA<C U'^'EL^LCSPAr.lSiFAGEOf-LAYjMAXTASKSONOlSPLt^T.'-Ank-ERS,

TR4c^.L^vl^L•ülMTI^E»ovEP'^^An,T^|^<lvMTMEA^|W<^• EA-VJ) »
f-^'AT fATAP^lNKli, • CNAM.EL'?»,!-,' LCS PARES»,Is,' ':>EC PAGE DELAY'

»H,» DIS«3 TASKS',Al,ItMi' USERS'»?^,» L'VFL T^ATE'»
Id,' HIN'? Si'ULATEO TIMtSTV^i ' OVE'-rtFAl FARTO»«,

*1,1IT3,» SECS THIMK TIME'fn«,li» MSEr ru'lPiiTF Tp-E»,
Is,« PAGE -Ol^K SETSAI.DJ

UOGAl, LAHEL N^OATäLFFTI
P;Un«TTValj
Tp TSLICF«?»
iJ'JA'-.TA»? J

."'AXCRaAl
MAJfPG^OigJ

TSE' :is7i
MPRr a-1 j

lotf veu«9i
MAKCSCHI LiJL^TAHLUSCHlFüTA^E'iT^IFS^CnFÜTAH) |

rfT.\TA|
-'EA^CDATA, yOOATAirfTH *PITE(DÄTA,nATAPHI;MT> J
iJlG!';
t\TFr,r;n AR?AY PA5ERG «(«iP,»A6ERQH0.'.,MANV(i j iAXUSE"5»i> J
INTEGFR ?AGEfc.iMTRV,sfcfr|
FO" StE:3»2l!'?3 DO
*: r'i.'L A Hr G^
"EAL STA^TIuLETT^i
ARRAv T^lV»AVG,MAKn,STAp<TPAGF ,A|.L, I JLETI 1E{-253^1) J
ARRAY ACTUAL0UANTl,KNGTM(-2ll7'l) I
iR^AY rA.iLTS(-2:^l)i
rn;MAT r.AB^C'USR'.nV.?,' USER',?I3i» PFSP ' , 06 ,11 ' CCM^ ' , Db , 3 ,

' wRKSl^IS»1 'JPWu»,!}»' fAUUTS«,I3f ' DI!;P',I3,
' ELInM?,' TASKS',! 3,« 'iSHKO'.rS' TOTttG » , t 4 , Al) I

I-TFG'.R PMOCF^URE FAIRSHAPFI
FAIRSHAREaEMlrRdCSPACES/MUHOrTAb-iS) I
FLFMEVT EtlNTfcFNAU^CHenuUEP,

ELTIMER,
ei,GlJPÜFS'JA"M«i
ACTH/ETASK ;

FL^-MEMT ARWAY EtUS^S ♦ T« J (IJ HAX ISFRr-), ELPAGLPHOcESS^R (1J C^U'^ELS) I
SET DISPIO, Pl'JPEX,

FLlCIbLFLl'T,
INIACTNEI. I'Ti

\CTIVITY TASK(USEH^Jh)l
P TFGE« IISERN'IMI
BEG! ^
FTHVAT PG0UT(,PTW»p9t2, » T ASK ' , I 3, I 7 , ' PAiJESOUT AT TrtAITf,Al)|

-163-

BOOLEAN PACEWMTi lOBOUNOl

INTEGER QUANTAUIIOiWOtKINSWTi PAUErAULTSi
^^SS?^1' ^wPACESREQ, PACECOUNT, PAGESQuT, NEWPACr.PAGESTOCETl

BEG I N
REAL VMTIMEPtECEj

VERYTOPOFTASKi
PAGEFAULTS«OUANTAUSED«9i)
TlHELEFTiVMTlMn
PAGESTOGET « NEWPACESREül
TOPOFTASKI

VHTIMEP|ECEiTDELEFT/(PACESTOCET*!)I
FOR NEWPACF«(!?,l.PACESTOGET> Dfl

BEGIN

IF TIHEC0UNT*VMTIMEPIECE LSS SCHEDTAB(STE,TIMESLICE) THEN

CANC£L(ELTIMER)|
HOLOJVMTPEPIECE)!

LISTO{ACTUALOUANTLENCTH,0,100,0,5,VMTIMEPIECE)|
TlMECnu^T«TlMECOUr4T*VntiMEPIECEi
END
ELSE BE8IM
COMMENT TIMER INTERRUOT COMES HERE I
LISTOUCTCALOUANTLENGTH, 0,180,0,5,
pASsIVATJ

CHEDT''B(STE,TIMESLlCE).TlMECOUNT)J

GO TO rnPOFTASK»
ENDj

IF NEUPACE EOL PACESTOGET THEN GO TO TWAIT|
PACEENTRY.PAGEEMTRY*!!
PAGEROHOWMA»;Y(PAGEENTRY)«ll
PAGERawHO(PAGEENTRY)«USERNüMi
PAGEFAULTS^PAGEFAULTSvti
PAGEWAITiTRUEl
STARTPAGEwAlTiTlMEl
ACTIVATE EL^UEUESCANNER DELAY PAGEDtLAYJ
PASSIVATE
FNOI

TWA IT |
COMMENT ISSUE TWAIT I
PAGESOUT ■ PAGECOUNT • FAIRSHAREi
IF PAGESOUT ßTR 9 THEN BEGIN

STARTPAGEwAlTiBl
PAGEENTRYiPAGEENTRY*ll
PA6ERQWW0<PA0FENTRY)iUSrRNUMj
PACERQHOWMANY{PAGEENTRY)if.PAGESOUT|

IF TRACELEVEL GTR 2 THEN WHITE(TIHE/1000IUSERNUMIPAOESOUT,P6OUT)I END OF PAGINGOUTI i «. vW ,r«wwTif
ACTIVATE ELUSER{USERNUM) AFTER CURRENTl
ACTIVATE ELOUEUESCANNER AFTER CURRENTl
TRANSFER(TSI (USEKiNUM), |NACTI VELIST) I
TlMECOUNTi3|
PASSlVATEl
GO TO VERYTQROFTASK
END

ENOl
PRflCEOURE FILEINEI1GLIST(LTSI)|

ELEMENT LTSIl
INSPECT LTSI WHEN TASK DO

9E6IN ELEMENT 7SIINLIST»
INTEGER LTSIPRII REAL LTSISSTILOSAL LABEL OUT|

-164-

LTSIP^IsSCMECT4;?fSTF:|P«?in«lTV)l
LTSlSSTiSSTj
TSir-LlST«Hf.4ü(ELr'IBLFLlST)|
rO^ TSII^LIST^SUCdSIlNLlST) ^MIL6 EXISKTSl INLIST) 00

INSPECT TSUAIST WMEN TASK DO
IF LTSIP?! LSS SCHEDTABCSTE.PHJORITY) THEN

REGTN P^CEOECTSITNU^TiLTSni
GO TO OUT END
ELSr
IT LT51PHI ECL SCHEPTA8(STE|PRIPR1TY) AND

LT^ISST USS SST THEN
HLM'i PRECtDEiTSIPLlSTitTSI)}
ftO TO OUT END I

TRANSFER (LTSlirUGIBUtU ST U
OUT I END OF MLET'EUIGUIST;

ACTIVITY TIMER»
BEGIM
BOOLEAN FORCETj
FOP''AT TYME('TMP»,D«>,2,» TASK », I ?, y3,S2, X2, S^, X3, «PRIO»! TV" 'iI3,

X2|»IST« ,|06,1.X2,»STE« ♦ • I<5»X2»Sl5# Al) i
PAGOUTC'PSF'.ü1».!!» TASK«,13,I7i' PACESOUT AT TSENDMöi

• PAÜFS NF-XT TIME I.ADl
TOPOFTIME«!
FORCEDiFALSE»
INSPECT ACTIVETASK JHEN TASK 00

»EGIN 900LEAV U5I0| INTEGER PAGESOUTi LOCAL LABEL LJ
OLClOBlOROUNni
TIMELEFTiTlMELFrT-SCHEOTABtSTE.TIMESLlCE)!
r3JANTAUSEü«CUA^TAÜSED ♦ U
IF QUAMTAUSEO GE^ ^CHEDTABCSTE»QUANTA) OR

PAGECOUNT GT« SCHEOTAB(STE.WAXCR) OR
NErtPAGE GEO SCHEOTAH(STE»MAXPORO) THEN BtSlN

STftSCHEDTABfSTE.lF PAGECniJNT ST* SCHE0TA8{STE,MAXCR)
T^EN MPRE ELSE TSE^P)!

SSTslF SCHEDTAR(STEiDTR) mi * TWEi 0 ELSE
TlME*SCHEOTAB(STE»0TR)*

IF SST LSS 0 THEN SST ELSE ^1
CA1JCEL(ACTIVET»SK)|
F1UEINELIGLIST(ACTIVETASK>|
PACESOUTsPAGECnUNT-FAlRSHARE»
FOPCtD-TPUFl
IF PAGESOUT GTP 9 THEN

BEGIN
STAWTPAGEwAITt^l
PAGEENTRY«PACEtVTRY*ll
PAGERawHO(PACPENTRY)fUSERNUM|
PAGERDHOWMA'.V{PAGEE^THY)»»PAGESnuT»
PAGF.STO'".ETal'AV(.i,PAGESTnGFT-NFwt»AGE*

PAGESOUTÄUNlFO^Mt.Z/.T.SEEDS))!
IF TRACELEVEL Sn 2 TWE^

^RITE{TlME/lH00,iJSERNUMiPAGESOUT,PACESTOGET,PAGOUT) I
GO TO L
E^^'D OF PAGING OUT I

FND ^F TlMEaLlCEENOI
PACiESTOGFT«PAGrSTÜGET-N£wPAGE)
I I
lOROUNOflF NEWPA8E GEQ SCMFDTAn(STFiIOLEVEL)

TWEM TRJE EISE FALSE I
TT'ECOUNTB/I

TF TRACELEVEL 8TR 1 THFN
*.RlTf(TYMJ,TlME/t00B|USERNUM»IF OLDIH THF^ MO» LLSE 'EX'I

■■A-"3kB*L'r-----* • t*~LWJa• ...:-..„ .^^^ii^i;

-165-

11 J2!8y5i0,!SSN !10' E(-SE ,
EX»ISCHEDTAB{STC,PRIORITY),ssT/taaa.sTE.

IF roRCEn THEN «TSENH TORCEO» ELSE » »)I
ENDI

ACTIVATE ELOUEUESrAMER AFTER CURRENTl
PASSIVATEJ
GO TO TOPOFTIHEP
END)

ACTIVITY USERnDfPRTY.CONVERSEiTHJNKSECOMOSfCOMPÜTEMEAN,
TRANSACTlONSiWORKSETMEAN)I

INTEGER iD.PRTYjTHlMKSECONOSiTOANSACTIONSjWORKSETMEAN»
BOOLEAN CONVERSE'
REAL COHPUTEMEANI
9EGIN INTEGER I |
REAL TEMPI
TSI{lO)«NEk TASKHO)!
NUMOFTASKS a NUMOFTASKS*!I
FOR I»{liliTRANSACTIONS) DO

BEGIN
INSPECT TSI(IO) WHEN TASK DQ

BEGIN
IOBOUND»IOÜFLTI
STARTTIMEBTIMEI
VHT1ME«NEGEXP(1/C0MPUTEMEAN,SEE01)I
WORKJNCSET^RANOlNTCa.Z^WORKSETMEANiSEEDZJI
NEWPAGESREQ»MAX(0,WORKlNGSET«PANOlNT((?,PACECOUNTiSEEO5))i
STE«PRTY»iF CONVERSE THEN 0 ELSE 10|
IF I EOL 1 THEN SST»0 ELSE
SST"SCHEDTAB(STE|DTP)*TIME*

IF SST LSS B THEN SST ELSE 0

FILEINELIGLIST(TSI(I0))| '
IF WAIT THEN BEGIN WA|T.FALSEI

ACTIVATE ELQUEUESCANNER AFTER CURRENT ENQl
PASSIVATE I

IF CONVERSE THEN BEGIN
TEMP.{TIME«STARTT1ME)/1000|
LlSTO(ALL|0|30al2,0,TEMP)|
LISTO(FAULTSI0I5!M.I?(PAGEFAULTS»,01)|
IF VMTIMF LSS 35 AND NEWPAGESREQ LEO 2 THEN
L|8TO(TRIVI0#380#,«9|TIMP) ELSE
IF V^TIMF: GT" 25P1 eH MEWPACESREO GTR 10 THEN
Ll5TO(MA«Oi0i300,2ielTEMP) ELSE LlSTO(AVC»0|300,1,0,TEHP)|
ENH OF COLLECTING (JATAI
IF TRACELEVEL GTR 0 THEiv
yRlTE(GARR,TlME/1000#USERNUMlIl(TlME-STARTTlME)/l000lVMTIHE/l000,

wORKINCSETiNEWPAGESREQ.PAGEFAULTS,CARDINAL<0ISPI0)*
CAROlNALfOlSPEX),

CAR0lNAL(ELlGlBLELIST),NUH0rTASKS,PACEC0UNTlPA6ESUSE0)|
MOLD(THINKSFCONHS • 1000)|

END OF INSPECTION!
END OF TRANSACTION LOOP|

REHpVE(TsniD))|
T£RMlNATE(TfI(|0))|
NUMOrTAlK8iNÜM0fTA8K8«ill
TERHIMATE(CURRENT)|
ENDl

ACTIVITY PACEPROnESSftR(J)|
INTEGER j|
BEGIN
INTEGER USERNUM,NUMPAGES,I|
TOPOFPAGEPRncESSORl

-166-

N ^A^SiPAGE^QuO' ^lANVdn
JSE^ ^..'MtPACERTUwOd)!
PiGfE TNVsPAGrE'.'TfJY-ll
FCK ^(l.l^PACECWTRV) 00 PEGp'

PAr.EMoWHOC I »«PASFHrjwMOC 1*1) i

PAGERüH0WMAMV(I)sHACE«OHOWMAMY(I*l)| EMQi
BEGIM tK'TESER If PAClNGOPERATirNS»
RtAU GETREüiJESTTIMtl
GETHElÜF"STTIMrsT|M£>
PAGlNG0PERATn\S«AeS(NUKPA5rs)//8*l i
FOR I«(l,l,PAr.I\COPERATlON'S) 00

H0LD(U^lrc?M(25,7t,l25,»,';E£O3>)|
PACESUSEO s PAGESUSEO ♦ NUMPAGESI
ASPECT TSKUSERNUM) WnrN TASK "0

HEGI'v
PAGEWAIT«F4LSEI
PAGECOuMaPAGECOUM + wuMPACES I
IF STARTP/^EWAIT GTh 9 TW£N

LlSTnfSTAPTPAGE,^,3«8,.?#
lN0 <GfTPEQiJESTTlHE.STARTPACEWAIT)/100?)|

IP PPWAJT THrN
BEGIN
PPwAIT«FALSf|
ACTIVATE ELr:ijruES(;A\KER AFTFR CÜRRCNTl
IF IDLING TME i

BEG I'.'
IOUr GiFALSEi
LISTP<lüLrTlME,a,3M0,,l,(TIME*STARTIOLETlME)/120^

two I
E^ni

PASSIVATEI
50 TO TrpOFPAGEPR^CESSOR
Ev-Oj

ACTIVITY OUEUESCAN^LRi
BEGIN P-TECER Ii
RF*U LASTTlHETWPUi
TOPnFf)UEUESCANNFR|
PHR I«<l#l,CHANigtUS) 10 IF PAGEEMTRY ST« 0 THEN

ACTIVATE ELPA^EPROCESSORdM

PASSllJlTE|LlNTERNAUSCHEDULEW 0ELAV <TIf1E^ASTTlMETHRU)»OVER«EAD|
LASTTIMETHRUaTl"t|
GrTn TOPOFQJEUESCA.NME:»
EMD OF O^SCA^NERI

ACTIVITY ^TER?>IALSCHFOULFRj
^EGfM
ELEMEVT UTSU
r.TFGFR PRIi
BOOLEAN BEHINOONLYJ
BCPLEAN PROCEDURE EMTRINCECRITtilAl

E^TRAMCECRITrHJA»

IF ?^9^^Da'F.0F^SE!INAL<nISPEX, LSS M^TAS^P^ISPLIST
PROCEDURE MOVETnOTSPUSTC LTSl)|

FLEMENT LTSli
T'JSPECT LTSl WMfN TAS'< QQ

BEGIN
LOCAL LABFL F^liMQPLACE I
SST«1F SST LSS '» TMFN ^ ELSf SSTf-TJ'^l

-167.

LTS1PRI TH^N
GO FOUNOPLACE

IF lOHOUNP THEN
BEGIN
INTEGER LTSIPRll
ELEMENT INIOJ
LTSlPRl«SCHEnTAB<STE,PRJORITV>J
FOR lMOiL*ST(OISP|0)|PRCO(r!IOJ WHILE EX|ST{|NIO) DO

INSPCCt INIO WHEN TASK DO
IF SCHEDUBCSTEiPRIORITY) LEO

9EGIN FOLLOW<U'IO,LTSU>
PRECLDECMEAOtOlSPIOj.LTSl)
END IOPOUNO CASE
ELSE TRAfJSFER(LTSIiDlSPEXJ|

FOUMOPLACEl
END OF MOVE TO OISP LISTI

LOCAL LABEL SORTOlSPATCHi
TOPOFINTERNALSCHtnULE»!
BEHlNnONLYiTRUEi
TOPOFSEARCHI
IF FMPTV(ELICIBLtLIST) THEN CP TO SORTOlSPATCH|
LTSI»FIRST(ELICIÖLELI3T)J
FOR LTSI-SUCaTSl) WHILE EXIST(PRED(LTSI)) 00

INSPECT PREOdTSI) WHEN TASK 00
IF NOT PACEWAIT THEN

BEGIN
IF BCHfNOONLY AND SST CEO Tp'E

THEM CO TO TSlNOCOOn
ELSE IF E^TRA^CECRITERIA THEN

RECIM
MOVETWISPLlST(TASKJ|
CO TO TOPOriNTERNAlSCHEOULER
ENG
FLSE GO TO SORTDISPATCWI

TSIN06000I
ENOl

IF NOT BEHINOONL^ THEN GO TO SQRTOISPATCHL
BEHINOONLY-FALSEI
GO TO TOPOFSEARCHl
SORTOISPATCHl

IF NOT EMPTY(ÜISPEX) THEN TRANSFER(FIRST(OISPEX)IOISPEX)I
BEGIN
COMMENT

THIS IS THE OISPATCHER PART OF THE SCHEDULER

ENOl

I

EXIST(DTSI)|
EXIST(DTSI) DO

INTEGER II
BOOLEAN BUSYPAGERSl
ELEMEWT OTSU
FOR OTSI«FIRST(OlSPIO>,SUC(DTSI) WHILE

FIRST(DISPEX),SUC{DTSI) WHILE
INSPECT OTSI WHEN TASK DO

IF NOT PAGEWAIT TMEN
IE8IN
ACTIVETASK ■ DTSIl
ACTIVATE ACTIVETASK AFTER CURRENTl
ACTIVATE ELTIMER DELAY SCHEDTAR(STEi TIMESLICE)i»TlMECOUNT I
PASSIVATE I
GO TO TOPOFPJTERNALSCHFOULFRI
ENOl

BuSYPAGERSiFALSfl
FOR I««l|XiCHANNELS) 00 IF NOT IDLE(ELPAGEPROCESSOR(1)) T^EN

BUSYPAGERS"TRUn
IF BUSYPACERS THEN;

liWiii-iiiilifirifttirihriY ..■:...... , ■ tui'i.tuiwim

-168-

■•5F-G1N
PP.!AIT«TRUF|
IF \CT EMPTYftLIRHLELTST) THE^:

RtGlM
IOLINGBTRUEJ
STARTlDLETP'EtTIHE

IF PAGEENTWV LFO * TME^ WAIT«TRüF ELSE
ACTIVATE EUmUESCANNER AFTER CUiHtMTl

PASSIVATEI
r.r» TO TOPOFINTERNALSCWEDULE»
E'D or DISPATCHER PWl

rMr, pF INTERMALSnurj JLERI
rOl'M|NT CONTRfJLLP't CODE CO^ES *EXT|

«FGl '
I Ttf.ER II
STARTrLOCKaCLOCKl
PAGFE 'TRVsPi
lOLPJCaF ALSEl
PPi*AlT s FALST |
KOFLT « TRMEJ
yAlT«TRUE»
PAGFS"SED « PI
«JEE^lsSEE^I SEEÜ2»SEFD1«17I SEEr3«SEE01»7ll
SEET4sStE0»23l rEF05«SEE0»3lI SEE06sSEEn«&7l SEEC7«SEE0«51|
NUMOFTASKS « .?|
ELQUEliESCANNER a M|W 'SUEUESCAMNERI
EUT1V'ER « MEW TIMER |
ELI'TER^AUSCHEDDLFt« = NEW INTERNALSCHEOULERi
TDR IB(1,1,CHAMMELS) DO ELPAGEPi'OCEFSORtUsME'J PAGEPR^CES^O6 (I) I
FCR Is(l,i,;1AXUSt.RS) W

EU0SER(I)«NEW USER(|.5#T«üEiTHIM<»VMTMEAN»5a»WSMEA^)|
ACTIVATE ELUStRd) AT I«3|^0

E-Dl
wnLD(SIHTIME • 65»0^)|

L'RITEC •••••••••• REAL TIME IN SECS'.CLOCK-STARTCLOCK.« •••••••)|
LPT'T(ALLi0i3'«'0»2.id,l1?»'*LL')l
I P'5r<T(TPIV,0|30*l,2f,l,f%'TRIVlAL»)I
ip3l\T(Av6»0»3^0il,iflll|97,«AVERAGEMl
LPPrTf^ARD^^BC^if'.^T.'HARU»)!
I psivTJSTARTPAGE.e.JBet^il.^^TlME TO START PAGE FETCH»)!
LPR^T(ini.tTIHE»f#3B«Mlili^»*lOUE TIMF WHILE ELIGIBLE TASKS')!
! »»UTfrAULTS,^,50,1,2,1,Bi'PAGE FAULTSMI
I pf;l\T(ACTUALQOA^,TLL.vGTH,P,lffc)»id,5i,99i »ACTUAL COMPUTE SLICES») I
FM? ef SIMULA r?LOCK
FNn or nxusERS LOOPI
r-O GETDATAI
' O'^ATALEFTI
f N^ OF SCHEDTA? DECL
EN? CF E"EPYTHIf,r,

-169-

APPENDIX D

LISTING OF SCRIPT PROGRAMS

Figure 4.1 is a block diagram of the User Script used for the

response time experiments reported in Sections 4.2.1 and 4.3. Figure

4.3 is a listing of TESTl, the first program in the script. The fol-

lowing two listings are of TEST2 and TEST3. The terminal output of

an actual user following the script is also included. The arrows on

this latter listing indicate the places where users must insert input

data to the script system. This example output was used as part of the

training of the users who participated in the experiment.

DIMENSION IB(8),IE(8)
2 1=0

PRINT 899
899 FORMAT(/'PLEASE ENTER N IN FORM J*l0**10

READ 900,N,NN
900 FORMAT(211)

N=N*10**NN
IF (N.EQ.O) GO TO 10
PRINT 901,N

901 FORMAT (,TEST2: CYCLES'',17)
CALL CLOCK(IB)
DO 1 J=1,N

1 1=1+1
CALL CLOCK(IE)
TRAN=36000*(IE(l)-IB(l))+3600^(IE(2)-IB(2))-f600*(IE(3)-IB(3))
TRA»=TRAN4«0*(IE(4)-IB(4))+10*(IE(5)-IB(5))+(IE(6)-IB(6))
TRAN=TRA»f.l*(IE(7)-IB(7))+.01*(IE(8)-IB(8))

PRINT 903,IB
903 FORMAT('START TIME= ',2ll,':',211,':',2ll,'.',211)

PRINT 903,IE
904 FORMATCEND TIME^',211,': ' ,211,' : ' ,2ll,' .' ,211)

PRINT 905,TRAN
905 FORMAT ('RESPONSE TIME^'.FS^)

GO TO 2
10 PRINT 906

906 F0RMAT(,TEST2 NOW COMPLETE. YOU ARE IN COMMAND MODE')

STOP

END

iaLäiaiiiima.,.,,-.^-..^,.^.-^ ■^-■.^^■t^i

-170-

REAL M1,M2,M3,M
DIMENSION IB(8),IE(8),C(20000)
DIMENSION Ml(30,30),M2)30,30),M3)30,30)

100 PRINT 899

899 FORMAT(/,TEST3: PLEASE ENTER N IN FORMAT 12')
READ 900,N

900 FORMAT(12)
IF (N.EQ.O) GO TO 10
PRINT 901,N

901 FORMAT(,TEST3: ITERATIONS^ ,13)
CALL CLOCK(IB)
DO 6 LFI.N
DO 50 1=1,20000

50 C(I)=I
DO 2 1=1,30
DO 1 J=l,30
Ml(I,J)=2
M2(I,J)=3

1 CONTINUE
2 CONTINUE

DO 5 1=1,30
DO 4 J=l,30
M=0
DO 3 K=l,30

3 M=M4M2(I,K)*M1(K,J)
M3(I,J)=M

4 CONTINUE
5 CONTINUE
6 CONTINUE
CALL CLOCK(IE)

TRAN=36000*(IE(1)-IB(1))+3600*(IE(2)-IB(2))-rt00*(IE(3)-IB(3))
TRAN=TRAN-f60*(IE(4)-IB(4))+10*(IE(5)-IB(5))+(IE(6)-IB(6))
TRAN=TRAN+.1*(IE(7)-IB(7))+.01*(IE(8)-IB(8))
PRINT 903,IB

903 FORMATCSTART TIME=,,2I1,,:,,2I1,,:,12I1 ' ' 211)
PRINT 904,IE '

904 FORMATCEND TIME=I,2I1,,:,,2I1,,:',2I11 ' 211)
PRINT 905,TRAN

905 FORMAT('RESPONSE TIME=,,F8.2)
GO TO 100

10 PRINT 906
906 FORMAT(,TEST3 NOW COMPLETE. YOU ARE IN COMMAND MODE')

STOP
END

-171-

BOOl 5.1 TSS AT CMU TASKID=0022 OU/07/70 19:02 3900 SDAPOOSI»
USER00
18:56 07 APR 70-BENCHMARK TFS7S ARE TO BE CONDUCTED AT 1900 - 2100 ..

SHARE PUBPRO/S132J123/PUBPRO
CDS PUBPR^USERLIBCSYSPRO)
CZAFW60 ENTER DSORG VIP OR VSP. DEFAULT: MEMBER GIVEN OLD DSORG.

»ABEND

t-ac)£-*()r*0* ♦»-. /-«(♦'! 0023

KU
INITIAL
CZUFW001 AT 19:01»: 37: 6 USERS, 0 TTYVS, 6 27IJ1VS, 0 10507S
BF03 SOURCE.TESTA COPIED AS SOURCE.TEST1.
BF03 SOURCE.TESTB COPIED AS SOURCE.TEST2.

BF03 SOURCE.TESTC COPIED AS S0URCE.TEST3.

BF03 SOURCE.FFCLDCK COPIED AS SOURCE.FCLDCK.

CZUiWOOl AT 19:04:53: 6 USERS, 0 TTYVS, 6 27«»1VS. 0 1050VS
A053 fiODIFICATIOrjS? ENTER Y OR N.
N
BO16 LP FOUND NO ERRORS.
0000250 E *** ILLEGAL EXPRESSION. OPERAM) NOT FOUND WHERE REQUIRED
0000250 X=Y(
n

LINE NOISE. REENTER

0000251 E *** ERROR IN RELATION OR LOGICAL OPERATOR OR CONSTANT
0000251 Z=X.Y
n
A053 MODIFICATIONS? ENTER Y OR N.
Y
iD/250/251
ÜR,100,2100
0000100 DIMENSION IB(8)/IE(8)
0000200 DIMENSION Ml(30,30)^(30,30)^3(30,30)
0000300 100 PRINT 899
0300UOO 899 FORMAT(/V fESTl: PLEASE ENTER N IN FORMAT \2V)
0000500 READ 900^1
0000525 900 F0RMAT(I2)
0000550 IF (N.EQ.O) GO TO 10
0000600 PRINT 901,^1
0000700 901 FORMAT(V TEST1: ITERATIONS, 13)
0000800 CALL CLOCK(IB)
0000900 DO 6 L=1,N
0000910 DO 2 1=1,30
0000920 DO 1 J=l,30
0000930 M1(I,J)=2
000091*0 M2(I,J)=3
0000950 1 CONTINUE
0000960 2 CONTINUE
0000970 DO 5 1=1,30
0000980 DO k J=l,30
0000990 M=0

-172-

0001000 DO 3 K=l/30
0001010 3 Nt=mi2(l,K)*Ml(K,J)
0001020 M3(I#0H1
0001030 4 CONTINUE
00010U0 5 CONTINUE
0001050 6 CONTINUE

SoS ÄÄlEW^
0001300 TRAN=TRAN+60*(IE(U)-IB(U))+10*(IE(5)-IB(5) +(IE(6)-IB(6))
00011*00 TRAr4=-mAN+.l*(IE(7)-IB(7))+.01*(IE(8)-IB(8))
0001700 PRINT 903#IB Ä1. „„,.,„„ ..^
0001701 903 FORMAT^ START TIME= ^211^:^211^:^211^.^211)
0001702 PRINT 901»,IE •.« • « i,,, «. « «ii\
0001703 90»i FORMATS END TIME= ^211^:^211^:^211^.^211)
0001704 PRINT gOS^TRAN
0001800 905 FORfV\T(V RESPOtÄE TIME= V.FS^)
0001900 WRITE(1,800) NJB^IE.TRAN
0001950300 FORMAT(2H 1,18,811,811^8.2)
0002000 GO TO 100

0002051 906™RMAT(5 TE.ST1 NOW COMPLETE. YOU ARE IN COMMAND MODEV)
0002052 sir>p
0002100 END
11
A053 MODIFICATIONS? ENTER Y OR N.

►N
BO16 LP FOUND fD ERRORS.

HEST1

TEST1: PLEASE ENTER N IN FORMAT 12
•01

TEST1: ITERATION 1
START TIME= 19:08:1*9.86
END TIME= 19:03:52.36
RESPONSE TIME= 2.50

TEST1: PLEASE ENTER M IN FORMAT 12
dplO

TEST1: ITERATION 10
START TIME= 19:09:05.15
END TIME= 19:09:31». 35
RESPONSE TIME= 29.20

TEST1: PLEASE ENTER N IN FORMAT 12
• 00

TEST1 NOW COMPLETE. rOU ARE IN 0OM1AND MODE
CHCIW STOP

»FTN TEST2/Y
Ä053 MODIFICATIONS? ENTER Y OR N.

■*N
BO16 LP FOUND NO ERRORS.

• IEST2

TEST2: PLEASE ENTER U IN FORM J*10*«K
-%11

TEST2: CYCLES= 10
START TIME= n:10:i»9.68
END TIME= 19:10: (»9.70
RESPONSE TIME= 0.02

TEST2: PLEASE ENTER N IN FORM vMO'W'K

-173-

► 25
TEST2: CYCLES= 200000
START TIME= 19:11:1«». 36
END TIME= 19:12:08.27
RESPONSE TIME= 53.91

TEST2: PLEASE ENTER N IN FOSM J*10**K

TEST2 NOW COMPLETE.CYOU ARE IN COMMAND MODE
OICIW STOP

► F7N TEST3/Y
Ä053 EDIFICATIONS? ENTER Y OR N.

.N
BO16 LP FOUND NO ERRORS.

»JESTS

TEST3: PLEASE ENTER N IN FORMAT 12
110

TEST3:ITERATI0NS= 10
START TIME= 19:16:13.01
END TIME= 19:18;07.«t8
RESPONSE TIME= 11«».U7

TEST3: PLEASE ENTER N IN FORMAT 12
02

TEST3:ITERATI0NS= 2
STATUT TIME= 19:18:25.23
END TIME= 19:18:31». 12
RESPONSE TIHE= 8.89

TEST3: PLEASE ENTER N IN FORMAT 12
•00

TEST3 NOW COMPLETE.OYOU ARE IN COWAND MODE
CHCIW STOP

•FINAL
CZUHW001 AT 19:19:00: 29 USERS, Ik TTYVS, 15 27U1VS, 0 1050VS
CZUHW001 AT 19:19:31: 29 USERS, II» TTYVS, 15 27klVS, 0 1050VS
B007 CPU TIME 00:01:21».77 CONNECT TIME 00:16:35 TIME 19:19 DATE Ok/07/70

-174-

APPENDIX E

LISTING OF ALLOCATION MODEL

üifU'i.A ^rniii
iMTFrnn r.'PFX^rn^cnn'T^^'T^sTAPTi-r t'/^c!'rTnMrpr.
If.'TFnriP GNAP/MAXJ0ns#MAXf1FnilFf>T5/MtJS«rr><; nr^|rn.

RtAL STATTlHE#STATF|NTFnPM /^rr
REAL FSR, L^lAV, 1.02 W, LOUPRSPO^S11

PFAL f'ARK3/IOinLE/IOPFST;
REAL QlAV#n2AV,01^02 ,MAP.KI»#fMRK5

TEPP^Ol'T;

REAL ARRAY PATAC 1:21,1 J2), I.MT1 (1 :?0)/|NT2 (1 J20);
fNTEfiER ARRAY TRANS ITP IRTd :2 D^FFVI RPp!«;?(1:21) STAT^PPHRM .91 y,
IMTEfiER ARRAY IMT5(1:20); - v/M . Ki.tn,
"FT APPAY CPOUEUE(l:2)/IOnUFü':(l{2)!
"JF.AL KARR/ESLAM<nELTl/Tl/-tPF/

Pr
)PF!

RFAL LAM;
FLEMEMT P^orFSSOR. I(^YS/1A r«
FLFfiFfiT UPPATE^nF^USEPS;
BOOLEAN INITIALIZE;

PPOCFmiRE RESET;
REfilN

i:!ITIALIZF:=FALSF;
COUNT:«0;
MAPK:=.MAPK2:=rAP;<3:=',AP»'./t J-MAPKS :"STATTIMP:»TI f'P •
r>iif,s:=siiMSS:=rii)MC:=^i,r,rc:=.si'',pr,«-si"'r,-=:^M"pp.-o n-
LniAV:=Ln2AV:=0.0; '
STATEINTEnRALj«CPinLF:"01AV:»n2Ay:-(nini r.=r) p.
FOP K:=l STEP 1 UNTIL 2i no • ■• /

REG IN
TRANS I TO IST(K):«SERVICEP IST(K):«STATPPPO^(K):«0•
nATACr^D^PATACK^):»!)^; * '
Ei'P;

Ff;n OF ppocEnup'- RESET;

•175-

ACTIVITY IJSER(PRinPITY) ; IMTrCFP pn|OP|TY-
REG Ifl '

RFA!. AnPIVALTIf!R/5FPVICFTIf'F/LSllf'P/F>'ITPPP'',Tljr'KTIMr rvri Fl-
ir.'TKr.ER INTERACTIONS,NUHPFOUFSTSj
ROOLEAN PASS1;
TI!INKTIf'Ej«N'EGEXP(1.0/30.0,SFFn);
FXITPROR: = IF nMFnrM(n.onou..n/s»-^n) (en 75 T«T" S

FLSF 1.0/26.0;
IJUSEPSj-flDSFRS * 1;
NIIHPEOUFSTSrHmiFnR^O.n^O.f^SFFn) + 1 o-
lll:SERVICFTIf1E:=rYCLEl:=0.0; * '

PASS1:=TPI'F;
APRIVALTÜ'F^TIf'F;
HISTn(STATFPROB/ir!T3/ST/»TF/(TirT-fAPi()*100 0).
ACCUrUSTATEINTEGRAL^MAPK.STATiM);
ACCUf^OlAV/IAPICU^,!,!);
'JAPPrsflARP+l.O;
IF IPLFCPROCFSSOP) THEM ACTIVATE PPPPFSCOD /^rrFn nipppfT-
l!AIT(npplJFi;r(PP.|ORITY)); Ai, iHMf- T,

TEMP: =T I f'F -APR IVA LT I f'F;
LSIJMR:=LSIJrR+TFMP;
SUfT:=r>UMP+TEf<P;
SIJMPR:=SUr,PP+TEf:P*TFflP;
SUMSl-SUM«+SFRV|CETIMF;
SUf'SG:=SMMS5+SFRVICFTIMF*SFnvirrTir,r-
SUMCs«SUMC+CYPLEl;
sur'cc:=r.iiricr+rYCLFi*rYci Elj
SUMPS :=SIJf'RS+TEMP*SFPVICFT IMF;
I'lSTOCTPAMSITDIST.inTl^TFMP,!);
MISTn(SERVICFPIST/ir

,T2/SFRV|rrT|f'P/l)-
HISTO(GTATEPROP, I MTJ.GTATE, (Tlf'F-MAPK)*100 n).
IHnEX:=5EPVICET1*^*10.0+1.0;
ACCUMC5TATFIMTEPRAL,MARK,STATE,-1) ;
ACCUM(02AV/f1APK5/02,-1);
ir;nEX: = iF M-DEX LFP 21 TI'EK' irjf>Fx c|Sc 21-
nATA(ir:nFX/l):=PATA(IHPFX/l) + TFnP;
nATA(irfnEX/2):=nATA(ir!PFX/2) + 1.0;
C0UHTl"C0UNT+l;
INTERACT I nfJS: = irv!TERArTIPf'S + 1;
IF IflTFRACTIPNS LSS NUMPEOUFSTS TMEN

RECIf;
HOLDCUNIFORMtO.O^.O^THINKTIMF^SFFn))!
00 TO Ul; tut
END;

r,'USERS:=-fJUSFPS - 1;
IF (DENIEH GEO 1) Af'P (NDSFRS Lr^ MAXCUSTOMFPR)

THEN REACTIVATE OENUSEPS AFTFP CUPPFMT;
END OF ACTIVITY USER;

-176-

ACTIVITY ESTIPATOP;
BEG IN
REAL Ul^lia/UERNKW, LAMNBI.FSMl^FSMa;
F.l:HSLAH: = (ESLAM*Tl+r.'APP)/(Tl*n^|.Tl);

rSf11: = (FSMl*Tl+niAV-LOlAV)/(Tl + HFLTl);
FSM2: = (FSfi2*Tl+02AV-Ln2AV)/(Tl + nRi.Tl);
ESR:= f-SMl + ESM2;
FSPF:=(ESPF*Tl+nPF)/(Tl+nELTl);
IF (Enn LSS LnwPFSPorsF) äKH (rmspps GFP MAyruninrFPs) THFM

nFGIM
Ul^FSPF/^SMl + F.5PF;
U2:=FSPF/FSM2 + FSPF;
LAMMEWt» (NUSFRS + l)*ESPF/MliSFPP;
ERNEWJ«LAMNEW*(1.0/(U1-LAMNEV') +1.0/(IJ2-L^MMFV/));
IF (EPflEW LSS HIGHPFSPOMSF) Arn (prnpn Qgn J) J\W
BEGIN

nEf!IEP:=nEf!|Fn-l;
f1AXCIISTOMFPS:=fiAXGIiSTOfiFPS + 1;
ACTIVATE NEW USEP(l) AFTEP ClinpFMT;

END;
END
ELSE IF (ESR GFO HI GHRFSPOr^F) ANP (MAXRUSTOMFRS G^o rn^PPS)

TI'EN MAXCIISTOMERS }«MAXCUSTC"PRS-l?
WR I TE(NUSFRS, MAXCUranflFPS, ESP, ESLAM, FSPF, Ul, 112);
NARR:=NPF:=0.0;
L01AV:=niAV;
La2AV:=02AV;
REACTIVATE CURRENT AT TIME + OEI.TI PR I OP;
GO TO El;

END OF ACTIVITY ESTIMATOR;

ACTIVITY GENERATOR;
BEGIN
GltHOLPaiEGEXPUAM^EEn));

IF NUSERS GFO MAXCHSTOMEPS THEN
BEGIN

nEr'IE.n:=PFNIEP + l;
GO TO Gl;

END;
ACTIVATE NEW U'JFR(l) AFTER CURRENT;
GO TO Gl;

END OF ACTIVITY GENERATOR;

..^^-.^.w.^. '' ■]i'-l;iitJi]muCT - 'Hi

■

-177-

ACTIVITY CnriPUTFRj
BEGIN
RFAL OVERMEAP^IJAMTA;

ClrF.XTRACT Fl RST(CPOlJFUF(1)) WK'FN LI^FP PO
BFHIN

C2:nVFPF!FAn: = .05 + STATF*.0n^;
IF PASSI THEN

BFCIN
CYCLFlr^TIMF-ARRIVALTIf'F+nVFPHPAp.
PASS1:=FALSF;
END;

nuANTA^uNiFnprtn.oonoi, .I/SEEP);
SERVICFTIMEr-SERVICFTinF+nUANTA;
HOLP(OVERMEAP+nUANTA);
INCLDPECUSER, I OOI'FUF(PP I PR ITY)) t
ACCUMCOIAV^IAPKI», 01,-1);
ACCUM(02AV/MARK5/02/l);
IF IPLE(IOSYS) THEN ACTIVATE IOS/S AFTFP CUPPFNT;
END

OTHERWISE REOIN
ACCUM(CPIPLF!/MARK2/CPPFST/1.0);
PASSIVATF;
ACrUf^(CPIPLF/MARK2/rPP'

rST/-1.0);
ENP;

00 TO Cl;
ENP OF ACTIVITY COMPUTER;

ACTIVITY IOPROCESSOP;
RFC IN
REAL IOSERVICF;
101: EXTRACT FlRST(IOOUEUF(1)) WHEN USER PP

REG IN
NPF:=NPF+1;
lOSERVICFc-UNIFOPMCO.O, .2,SEEP);
HOVPdOSERVICE);
TEMP}«UNIPORM(0.0#1.0,SEED);
IF TEMP LFO EXITPPOB THPN ACTIVATE USER AFT^R CMPPENT

ELSE BEGIN
INCLUPFOlSEP^PniJEUECPPIPRITY));
ACC'IM(n2AV.MARKS, 02,-1);
ACCUMCCIAV, MARK»» / PI, 1);
IF IPLE(PPOCESSPR) THEN

ACTIVATE PROCESSPP AFTER CIIPRFNT;
ENP;

ENP
OTHERWISE BEGIN

ACCUM(lOIPUVIARIO, lOREST^.O^-
PASSIVATE;
ACCUfi(IOIPLF/MARK3/IOPFr>T/-1.0);
Ef!P;

GO TO 101;
ENP OF ACTIVITY IOPROCFSSOR;

-178-

PFAH (SEEP^TAPTUP.MAXPFCUFSTS);

LAMI'1!O/1O!:S;/SFFP' ' 5TAPT^P,'ST^T,,^ 'MAXPF^rST^^MAXprriirSTS);
LOWPFSPONSF:«3.25;
li|fif:PL:SPONSC:»3.5;
MAXCUSTOflFRS:» 30;
INITIALIZE:=TRUF;
~1:=50.0;
nFLTl:=25.0;
FOR K: = l STFP 1 IIMTIL 20 On

RFGIN
INT1(K):=1.5*K;
IMT2(K):=.1*K;
INT3(K):=K-1;
Ff.'P;

PROCESSOR := NFl? COMPUTER;
IOSYS:=NFW IOPROCFSSOR;
UPDATE J «NEW ESTIf'ATOR;
OFfJUSFRS:=NEW fiFK'FRATOR;
ACTIVATE UPDATE AT TIMF +nrLT1 + T1.
ACTIVATE GENUSEPS AT TIMF +100-
MAIN:=CUPRFNT;
FOR K: = l STFP 1 IJfITIL 20 nn

ACTIVATE MRW USF.R(l) AFTF^ niPRPKT-
FOR SNAP:* 1 STEP 1 Uf!TII 16 nn
HEG If.'
IIOLnUOO.O);
ACCUM(STATE INTEGPAL/IAPK, STATF,0) •
ACCUfUCP|r)lB/MARK2/CPRFST/0.0); '
ACCUMdOIPLE.nARKS, lOPFST.O.O);
WR,TFCOUrm; AT R"r, C0MPLFT,0fJ 'S»,TIM!:,' NUMPÜP OF TA^K? pnorps^P \S*,

WRITEC CURRENT STATE IS%STATF,'^VPRACF STATE l<"
STATEIMTEGPAL/CTIMF-STATTI'T)); '

TEMP:=SUMS/COUf;T;
OUT:=S0RT(SUMSS/COUMT-TFMP*TEMP)-
l/RITEC SAMPLE AVERACF AHP SP OF'SFRVICF TI'^F«; APE« TFf'P OCT^ •
TEMPi-(COUNT*SUMRS.SUMR*SUMS)/(rnuriT^
OUT:=(SUMR-TEMP*SUM5)/Cn!;\'T;

TF^i^lsuMC/cnurir EST,MATR 0F SLnpr AMn «^PCFPT APP.^^OMT);

OUT:=SnRT(SUMCC/COII^!T-TFMp*TFMf,).

OllT:=snRT(SUf^PR/Cni!f!T-TF»in*xrfiip).
;;RITF(' SAMPLE AVERAGE AW SD OF^RFSPO^F TI^-^ APF« TFMP OMT).

RITE PPORARILITY PROCFSSnR |S ,pLF I S', CrnLr^T, rJ.^'^V j^ n .
WPITE(PPOHAniLITY IOSYSTFM IS mLF \^]ni^r/,jllr.~rlrr..rA

)'
'./PITFC AVERAGE MUMPFR If! SYSTEM 1 AfP /AP^ riA^(TM I^TATT »M n2AV/(TIME-STATTIMF)); .^^/(Tl -STATT|Mr)#

'/riTE(' TIT TA^LE PISPLAYS RFSPOfSF Al A FUMPTinM nc qrrpv.rpM.
WPITRC IMTFRVAL'.'AVFPAfP n» »Mr.Mnrp or p0|„:'M. 3 ');

FOR K:=l STFP 1 UMTIL 21 Pn)'
REOIN

onT:=K)l0-A™K/2) rF0 1•0 TVEl' il/rA(fc''1>/n^^"^) pfrr 0.0;
WRITE(nUT,TFMP,nATA(K,?));
END;

RESET;
FflP;
Ef.'n OF SIMULA RLOCK;

-179-

BIBLIOGRAPHY

Adiri, I., and B. Avi-Itzhak (1969), "A Time-Sharing Queue", Management
Science. Vol. 15, No. 11, pp. 639-657.

Adiri, I. and B. Avi-Itzhak (1969b), "A Time-Sharing Queue with a Finite
Number of Customers", Journal of the Association for Computing Machinery.
Vol. 16, No. 2, pp. 315-323. ^

Avi-Itzhak, B. and P. Naor (1963), "Some Queueing Problems with the Service
Station Subject to Breakdown", Operations Research. Vol. 11. No. 3.
pp. 303-320.

Bell et al. (1971), C.mmp: The CMU Multiminiprocessor Computer, Requirements
and Overview of -he Initial Design, ARPA Report, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, Pa.

Bryan, G. E.,(1967), JOSS: 20,000 Hours at the Console - A Statistical
Summary, Memorandum RM-5359-PR, The RAND Corporation.

Buzen, J. (1971), Queueing Network Models of Multiprogramming, Ph.D. Dis-
sertation, Division of Engineering and Applied Physics, Harvard University
Cambridge, Mass.

Chang, W. (1966), "A Queueing Model for a Simple Case of Time-Sharing",
IBM Systems Journal. Vol. 5, No. 2, pp. 115-125.

Coffman, E. G., and B. Krishnamoorthi (1964), Preliminary Analyses of Time-
Shared Computer Operation, DOC. SP-1719, System Development Corporation
Santa Monica, California.

Coffman, E. G. (1966), Stochastic Models of Multiple and Time-Shared Computer
Operations, Ph.D. Thesis, University of California, Los Angeles, California.

Coffman, E. G. and R. C. Wood (1966), "Interarrival Statistics for Time
Sharing Systems", Communications of the ACM. Vol. 9, No. 7, pp. 500-5Ü3.

Coffman, E. G. and L. Kleinrock (1968), "Feedback Queueing Models for
Time-Shared Systems", Journal of the Association for Computing Machinery
Vol. 15, No. 4, pp. 549-576. 6 L

Coffman, E. G. and R. R. Muntz (1969), "Models of Pure Time Sharing Disciplines
for Resource Allocation", Proceedings of 24th National Conference of ACM
ACM Publication P-69, pp. 217-228. " ~ ~~"—'

Conway, C., W. Maxwell, L. Miller (1967), Theory of Scheduling. Addison-
Wesley, Reading, Mass.

Corbato, 1. (1968), "A Paging Experiment with the MULTICS System", MIT
Project MAC, Document MAC-M-384.

•180-

Courtois, P. J. (1971), On the Near-Complete-Decomposabillty of Networks
of Queues and of Stochastic Models of Multiprogramming Computing Systems,
Report of Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pa.

Dahl, 0. and Nygaard (1966), "Simula - An Algol-Based Simulation Language",
Communications of the ACM. Vol. 9, No. 9, pp. 671-678.

Deniston, W. (1969), "SIPE: A TSS/360 Software Measurement Technique",
Proceedings of 24th National Conference of Association for Computing
Machinery. ACM Publication P-69, New York, pp. 229-245.

Denning, P. (1968), "The Working Set Model for Program Behavior", Communica-
tions of the ACM. Vol. 11, No. 5, pp. 323-333.

Denning, P. J. (1970), "Virtual Memory", Computing Surveys. Vol. 2. No. 3.
pp. 153-189.

Estrin, G. and L. Kleinrock (1967), "Measures, Models and Measurements for
Time-Shared Computer Utilities", Proceeding of 22nd National Conference.
Association for Computing Machinery. Thompson Book Co., WaaMngt-nn, n.r.
pp. 85-%.

Feller, W. (1957), An Introduction to Probability Theory and its Applica-
tions. Vol. I, John Wiley and Sons, Inc., New York. ~ "' "'

Oavtr, D. P. (1969), "Statistical Methods for Improving Simulation Efficiency",
Third Conference of Applications of Simulation, pp. 38-46.

Gordon, W. J. and C. F. Newell (1967), "Closed Queueing Systems with Ex-
ponential Servers", Operations Research. Vol. 15, No. 2, pp. 254-265.

Greenberger, M. (1966), "The Priority Problem and Computer Time-Sharing",
Management Science. Vol. 12, No. 11, pp. 888-906.

IBM (1968), Time-Sharing System - Concepts and Facilities, Form c28-2003.

Jackson, J. R. (1963), "Jobshop-Like Queueing Systems", Management Science.
Vol. 10, No. 1, pp. 132-142. '

Kleinrock, L. (1964), "Analysis of a Time-Shared Processor", Naval Research
Logistics Quarterly. Vol. 11, No. 1, pp. 59-73. ™~--~ -~ -

Kleinrock, L. (1967), "Time-Shared Systems: A Theoretical Treatment",
Journal of the Association for Computing Machinery. Vol. 14, No. 2, pp. 242-26 1.

Krishnamoorthis, B. and R. C. Wood (1966), "Time-Shared Computer Operations
with Both Interarrival and Service Times Exponential", Journal of the Associ-
ation for Computins Machinery. Vol. 13, No. 3, pp. 317-338.

Little, J.(1961), "A Proof of the Queueing Formula L=XW", Operations
Research. Vol. 9, No. , pp. 383-387.

-181-

Little, John D. C. (1970), "Models and Managers: The Concept of a Decision
Calculus", Management Science, Vol. 16, No. 8, pp. 466.

McCredie, J. W. (1967), A User Oriented Approach to the Design of Scheduling
Algorithms for Time-Shared Computer Systans, Working Paper, Graduate School
of Industrial Administration, Carnegie-Mellon University, Pittsburgh, Fa.

McCredie, J. W. (1970), "The Structure of Discrete Event Simulation Lan-
guages"» Summer Simulation Conference Proceedings, pp. 88-98.

McCredie, J. W. and S. Schlesinger (1970), "A Modular Simulation of TSS/360",
Applications of Simulation, pp. 201-206.

McKinney, J. M. (1969), "A Survey of Analytical Time-Sharing Models",
Computing Surveys. Vol. 1., No. 2.

Madnick, S. W. (1968), "Multi-processor Software Lockout", Proceedinas-
1968 ACM National Conference, pp. 19-24.

Mills, R. G. (1971), "Appendix", Workshop on System Performance Evaluation.

ACM, pp. 319-320.

Mood, A. M. and F. A. Graybill (1963), Introduction to the Theory of Statis-
tics. McGraw-Hill Book Company, Inc., New York.

Moore, C. G. (1971), Network Models for Large-Scale Time-Sharing Systems,
Ph.D. Dissertation, University of Michigan, Ann Arbor, Michigan, Technical
Rep No. 71-1.

Morse, P. M. (1958), Queues. Inventories and Maintenance. John Wiley and
Sons, Inc., New York.

Parzen, E. (1962), Stochastic Processes, Holden-Day, Inc., San Francisco,
California.

Rasch, P. J. (1970), "A Queueing Theory Study of Round-Robin Scheduling of
Time-Shared Computer Systems", Journal of the Association for Computing
Machinery. Vol. 17, No. 1, pp. 131-145.

Saaty, T. L. (1961), Elements of Queueing Theory with Applications. McGraw-
Hill Book Company, Inc., New York.

Saaty, T. (1966), "Seven Moro Years of Queues, A Lament and a Bibliography",
Naval Research Logistics Quarterly. Vol. 13, No. 4.

Schräge, L. E. (1966), Some Queueing Models for a Time-Shared Facility,
Ph.D. Thesis, Cornell University, Ithaca, New York.

Schräge, L. (1969), The Modeling of Man-Machine Interactive Systems,
University of Chicago Working Paper.

Scherr, A. L. (1967), An Analysis of Time-Shared Computer Systems, M.I.T.
Research Monograph No. 36, The M.I.T. Press, Cambridge, Mass.

r||rwwvrnw^^)MVi!'»WW''lfnM^P.>i!PAii>iUi.i|"1iJ»!Mii'.!ll,l.''r' *mrmmmm*m?im***m~*!wm**v*^ mmmvmmvmmw-.y .•

.182-

Simon, H. A., A. Ando (1961), "Aggregation of Variables in Dynamic Systems",
Econometrica, Vol. 20, No. 2.

Takacs, L. (1963), "Single Server Queue with Feedback", The Bell Systems
Technical Journal, Vol. LXII, No. 2, pp. 505-519.

Totschek, R. A. (1965), An Empirical Investigation into the Behavior of
the SDC Time-Sharing System, SP-2191, System Development Corporation.

Univac (1970), SIMULA-Programmers Reference, UP-7556, Rev. 1, Sperry Rand
Corporation.

Van de Goor, A. (1970), Design and Behavior of TSS/8: A PDP-8 Based Time-
Sharing System, Ph.D. Dissertation, Carnegie-Mellon University, Pittsburgh,
Pa.

Wilkes, M. V. (1968), Time-Sharing Computer Systems. American Elsevier,
New York.

Wilkes, M. V. (1971), "Automatic Load Adjustment in Time-Sharing Systems",
Workshop on System Performance Evaluation. ACM, pp. 308-318.

Wulf, W. A. (1969), "Performance Monitors for Multi-Programmed Systems",
Second Symposium on Operating Systems Principles, pp. 175-181.

Wulf, et al. (1971), HYDRA, A Kernel Operating System for C.mmp, External
Specifications, Department of Computer Science Report, Carnegie-Mellon
University, Pittsburgh, Pa.

^ ii ■! i tmmm- 1 „. J

